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ABSTRACT
Leber hereditary optic neuropathy (LHON) and autosomal
dominant optic atrophy (DOA) are the two most common
inherited optic neuropathies and they result in significant
visual morbidity among young adults. Both disorders are
the result of mitochondrial dysfunction: LHON from
primary mitochondrial DNA (mtDNA) mutations affecting
the respiratory chain complexes; and the majority of DOA
families have mutations in the OPA1 gene, which codes
for an inner mitochondrial membrane protein critical for
mtDNA maintenance and oxidative phosphorylation.
Additional genetic and environmental factors modulate
the penetrance of LHON, and the same is likely to be the
case for DOA which has a markedly variable clinical
phenotype. The selective vulnerability of retinal ganglion
cells (RGCs) is a key pathological feature and under-
standing the fundamental mechanisms that underlie RGC
loss in these disorders is a prerequisite for the
development of effective therapeutic strategies which are
currently limited.

Mitochondrial disorders are a major cause of
chronic human disease with an estimated preva-
lence of 1 in 10 000 in the UK and a further 1 in
200 individuals being at-risk mutational carriers.1 2

Ocular involvement is a prominent feature in this
group and often points towards the underlying
mitochondrial aetiology, which allows for a more
targeted diagnostic approach. Optic nerve dysfunc-
tion can be the presenting and only ophthalmolo-
gical manifestation causing the two most common
inherited optic neuropathies encountered in clinical
practice, Leber hereditary optic neuropathy
(LHON) and autosomal dominant optic atrophy
(DOA), which are the focus of this review. In the
majority of cases, the pathology in LHON and
DOA is limited to a highly specialised group of cells
within the eye, the retinal ganglion cells (RGCs),
but the phenotype associated with these two
conditions is expanding, providing important
insights into possible disease pathways leading to
optic nerve degeneration and visual failure.

LEBER HEREDITARY OPTIC NEUROPATHY

LHON mutations
LHON (OMIM 535000) was first described as a
distinctive clinical entity in 1871 by the German
ophthalmologist Theodore Leber (1840–1917).3 He
reported a characteristic pattern of visual loss
among members of four families and his observa-
tions were subsequently confirmed in pedigrees
from different populations.4–6 These early studies
highlighted several of the salient features of LHON
including the maternal transmission of the disease,
the predilection of males to lose vision, and the
almost exclusive involvement of the optic nerve.
The non-Mendelian pattern of inheritance was

only fully explained in 1988 when LHON became
the first human disease proven to be caused by a
point mutation (m.11778G.A) within the mito-
chondrial genome.7 Over 95% of LHON pedigrees
are now known to harbour one of three mitochon-
drial DNA (mtDNA) point mutations:
m.3460G.A, m.11778G.A and m.14484T.C,
which all involve genes encoding complex I
subunits of the mitochondrial respiratory chain.8

In a meta-analysis of 159 pedigrees from Northern
Europe and Australia, m.11778G.A was the most
prevalent mutation but there is considerable
variation in the relative frequency of these three
primary LHON mutations worldwide (table 1).
The predominance of m.11778G.A is even more
pronounced in the Far East where it accounts for
,90% of all cases,9 10 and although m.14484T.C is
relatively rare, it is the most common mutation
found among French Canadians (87%) as a result
of a founder event.11 12 Primary mutations have not
been identified in a small minority of clinically
diagnosed LHON patients, the most likely
explanation being that rare pathogenic mtDNA
variants are segregating in these families.13 Disease
causing mutations have been identified in a
proportion of these cases, while other putative
LHON mutations require further confirmation as
they have only been found in singletons or a single
family (table 1).

Epidemiology
LHON is the most common of the primary
mtDNA diseases, with a minimum prevalence of
1 in 31 000 affected individuals in the North East
of England and 1 in 8500 carriers being at-risk of
visual loss.14 Fairly similar figures have been
reported in other Caucasian populations, with an
LHON prevalence of 1 in 39 000 in the Netherlands
and 1 in 50 000 in Finland.15 16 About 2% of visually
impaired people on the blind register in Australia
are also reported to suffer from LHON.17 The peak
age of onset in LHON is between the age of 15–
30 years and 95% of carriers who will experience
visual failure will do so before the age of 50 years
(table 2). However, visual deterioration can occur
anytime during the first to the seventh decade of
life and LHON should be part of the differential
diagnosis for all cases of bilateral, simultaneous or
sequential optic neuropathy, irrespective of age and
especially in male patients.18 19 Except for one
report which found a slight increase in the age of
onset in females carrying the m.11778G.A muta-
tion,20 it is generally accepted that neither gender
nor mutational status significantly influences the
timing and severity of the initial visual loss.11 21–23

Affected individuals are often aware of other
affected family members, but up to 40% have no
family history. These most likely represent cases
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where family history is difficult to trace back, given that de
novo mutations are rare in LHON.14 24

Clinical features

Pre-symptomatic phase
Fundal abnormalities such as telangiectatic vessels around the
optic discs and variable degrees of retinal nerve fibre layer
oedema have been documented in some asymptomatic carriers,
and these can fluctuate with time. Using optical coherence
tomography imaging, thickening of the temporal retinal nerve
fibre layer was found in a proportion of unaffected LHON
carriers, which provides further evidence that the papilloma-
cular bundle is particularly vulnerable in this disorder.25 26 On
more detailed psychophysical testing, some individuals also
exhibited subtle impairment of optic nerve function including
loss of colour vision affecting mostly the red–green system,
reduced contrast sensitivity, and subnormal visual electrophy-
siological parameters.27

Acute phase
LHON carriers remain asymptomatic until they experience
blurring or clouding of vision in one eye. In the vast majority of

cases, visual dysfunction is bilateral, the fellow eye becoming
affected either simultaneously (25%) or sequentially (75%),
with a median inter-eye delay of 6–8 weeks.20 Rare cases of
unilateral optic neuropathy in LHON have been reported, with
the fellow eye remaining unaffected over a follow-up period of
up to 16 years.28 29 Visual acuity reaches a nadir 4–6 weeks after
disease onset and it is severely reduced to 6/60 or less. The
characteristic field defect is a steep-sided central or centrocaecal
scotoma and this can be formally documented using Goldmann
or kinetic perimetry. Other clinical features include the early
impairment of colour perception but, importantly, pupillary
reflexes are preserved and patients usually report no pain on eye
movement. Ocular examination during the acute stage provides
other diagnostic clues and in classical cases the following
abnormalities can be observed: vascular tortuosity of the central
retinal vessels, swelling of the retinal nerve fibre layer, and a
circumpapillary telangiectatic microangiopathy (fig 1).
However, it must be stressed that in ,20% of LHON cases,
the optic disc looks entirely normal in the acute phase.30 31

Chronic phase
The retinal nerve fibre layer gradually degenerates and after
6 months, optic atrophy is a universal feature. If a patient is
only seen at this stage, it can be difficult to exclude other
compressive, infiltrative and inflammatory causes of a bilateral
optic neuropathy, especially if there is no clear maternal family
history. In these cases, neuroimaging of the anterior visual
pathways is mandatory while awaiting the results of molecular
genetic testing.

Visual recovery
Visual recovery is observed in some patients even several years
following disease onset. but the chances of improvement are
influenced by the patient’s mutational status, being least with
the m.11778G.A mutation, highest with the m.14484T.C
mutation, and the m.3460G.A mutation having an intermedi-
ate visual prognosis (table 2). The recovery in visual parameters
is not only restricted to visual acuity, but can also include the
development of small islands of normal field (fenestrations)
within the central scotoma or a reversal of dyschromatop-
sia.28 32 33 Positive prognostic factors for visual improvement are

Table 1 Pathogenic mtDNA mutations associated with Leber
hereditary optic neuropathy

Mutation Gene Prevalence (%) Reference

Primary .95

m.3460G.A MT-ND1 13 220, 221

m.11778G.A MT-ND4 69 7

m.14484T.C MT-ND6 14 32, 222

Rare ,5

m.3376G.A MT-ND1 45

m.3697G.A 46

m.3733G.A 223

m.4160T.C 41

m.4171C.A 224

m.11696G.A MT-ND4 40

m.11253T.C 225

m.10663T.C MT-ND4L 226

m.12848C.T MT-ND5 227

m.13730G.A 228

m.14568C.T MT-ND6 229

m.14279G.A 230

m.14459G.A 42–44

m.14482C.G 231

m.14495A.G 232

m.14498C.T 233

m.14568C.T 234

m.14596A.T 40

Table 2 Lifetime risk of visual failure for Leber hereditary optic
neuropathy carriers and recovery rates

Pedigrees
(n)

Median
onset

Male:
female
ratio

Visual
recovery
(%) Reference

m.3460G.A 9 29 years 2.3:1 22 22

8 20 years 4.3:1 25 20

m.11778G.A 49 28 years 4.5:1 4 21

66 24 years 3.7:1 25 20

10 29 years 5.3:1 25 28

m.14484T.C 17 27 years 2.1:1 37 23

23 19 years 7.7:1 58 11

Figure 1 Acute fundal appearance in Leber hereditary optic neuropathy
showing disc hyperaemia, swelling of the parapapillary retinal nerve fibre
layer and retinal vascular tortuosity.
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an early age of onset (,20 years), subacute presentation with
slow progression of the visual deficits, and large optic nerve
head surface area.28 34 However, LHON is a devastating disorder
with the majority of patients showing no functional improve-
ment and remaining within the legal requirement for blind
registration.

Associated features
Although visual failure is the defining feature in this mitochon-
drial disorder, cardiac arrhythmias and neurological abnormal-
ities such as postural tremor, peripheral neuropathy, non-
specific myopathy and movement disorders have been reported
to be more common in LHON compared to controls.35–39 These
are rarely clinically significant but a small number of LHON
pedigrees do have severe neurological deficits (spastic dystonia,
ataxia and juvenile onset encephalopathy) in addition to the
optic neuropathy. These ‘‘LHON plus’’ syndromes have been
linked to various mtDNA mutations in isolated pedigrees from
Holland, Australia and North America: A11696G and/or
T14596A,40 T4160C,41 and G14459A,42–44 respectively. Two
mtDNA complex I mutations point mutations, m.3376G.A45

and m.3697G.A,46 have also recently been identified in
individuals with overlap clinical features of both LHON and
MELAS (mitochondrial encephalomyopathy, lactic acidosis, and
stroke-like episodes). Interestingly, a significant minority of
Caucasian LHON carriers, predominantly females with the
m.11778G.A mutation, develop clinical and neuroimaging
features indistinguishable from multiple sclerosis (MS), includ-
ing unmatched oligoclonal bands in the cerebrospinal fluid
(Harding’s disease).47–50 It is currently not known whether the
prevalence of this MS-like illness in LHON is higher than
expected due to the chance occurrence of these two disorders,
and although controversial, some investigators have argued for a
potential role of autoimmunity in the pathophysiology of this
mitochondrial disorder.51–55

Diagnosis
A tentative diagnosis of LHON can usually be made on clinical
grounds, especially if classical ophthalmological features are
present and a clear maternal history is elicited. Molecular
genetic testing on a blood DNA sample, however, remains the
gold standard and will confirm that the patient harbours one of
the three primary mtDNA LHON mutations, with implications
for future genetic counselling. If indicated, electrophysiological
studies, including pattern electroretinograms (PERGs) and
visual evoked potentials (VEPs), can be carried out to exclude
retinal pathology and confirm optic nerve dysfunction.56 An
electrocardiogram is also recommended to exclude a pre-
excitation syndrome which has been documented in LHON,
although such a finding is rare and does not require any
intervention in the absence of cardiac symptoms.30 31 Computed

tomography (CT) and magnetic resonance imaging (MRI) scans
are usually normal in LHON, but there are reports of non-
enhancing high signals within the optic nerve and sheath
distension, secondary to slight oedema or gliosis in the atrophic
phase.57–62

Biochemical features
Oxidative phosphorylation (OXPHOS) provides for most of the
cell’s adenosine triphosphate (ATP) requirements and this is
achieved by a chain of five respiratory complexes situated on the
inner mitochondrial membrane. Since all three primary LHON
mutations involve complex I subunits, one would expect
respiratory chain function to be compromised, leading to a
deficit in ATP synthesis and RGC degeneration as a conse-
quence of energy failure. However, both in vitro and in vivo
biochemical studies have produced conflicting results regarding
the extent of respiratory chain dysfunction in LHON (table 3).
In a small number of in vivo studies using phosphorus magnetic
resonance spectroscopy (31P-MRS), the most consistent defect of
mitochondrial function was identified in persons with the
m.11778G.A mutation and none among those with the
m.3460G.A mutation.63–67 A striking conclusion from all these
biochemical studies is that no significant difference between
affected and unaffected individuals with a disease causing
LHON mutation could be demonstrated. But as none of these
studies have been performed directly on RGCs and the causative
biochemical mechanisms could be highly tissue-specific, further
studies are warranted.

Neuropathology
These functional studies also raise important issues regarding
the cell specific ocular pathology in LHON which is limited to
the RGC layer, with sparing of the retinal pigment epithelium
and photoreceptors. There is pronounced cell body and axonal
degeneration, with associated demyelination and atrophy
observed from the optic nerves to the lateral geniculate bodies.
Experimental data indicate impaired glutamate transport,68

oxidative stress69 70 and increased mitochondrial reactive oxygen
species (ROS)71 within RGCs and support an apoptotic
mechanism of cell death.72 73 LHON patients also have reduced
a-tocopherol/lipid ratios and high levels of 8-hydroxy-2-deoxy-
gaunosine in blood leucocytes, both biological markers of
increased free radical production.74 75 However, the selective
vulnerability of RGCs in LHON still remains unexplained, and
this area of research has been greatly hampered by the lack of
access to diseased human tissues, the retina and optic nerve not
being amenable to biopsies.

Animal models
The development of faithful animal models in LHON is
therefore critical but there is still no murine model where the
primary LHON mutations have been successfully introduced
within the mitochondrial genome. In spite of these technical
challenges, significant advances have been made over the past
decade and there are currently three experimental paradigms, all
of which disrupt OXPHOS and recapitulate the optic nerve
degeneration seen in LHON: (1) intravitreal injection of a
respiratory chain poison such as rotenone76; (2) downregulation
of nuclear encoded complex I subunits (for example, NFUFA1)
with specific mRNA-degrading ribozymes77; and (3) allotropic
expression of mutant subunits (for example, MTND4) which
are then imported into the mitochondria.78

Table 3 Respiratory chain dysfunction in Leber hereditary optic
neuropathy

MtDNA
mutation

In vitro88 235–249 In vivo63–67

Complex I
activity (%)

Respiratory
rate (%)

ATP synthesis
(%) 31P MRS (%)

m.3460G.A 60–80 30–35 90 0–40

m.11778G.A 0–50 30–50 35 75

m.14484T.C 0–65 10–20 90 50

ATP, adenosine triphosphate; 31P-MRS, phosphorus magnetic resonance
spectroscopy.
% decrease relative to controls.

Review

J Med Genet 2009;46:145–158. doi:10.1136/jmg.2007.054270 147

 on M
arch 29, 2024 by guest. P

rotected by copyright.
http://jm

g.bm
j.com

/
J M

ed G
enet: first published as 10.1136/jm

g.2007.054270 on 10 N
ovem

ber 2008. D
ow

nloaded from
 

http://jmg.bmj.com/


Incomplete penetrance
An intriguing feature of LHON is that only ,50% of males and
,10% of females who harbour one of the three primary
mutations actually develop the optic neuropathy. This incom-
plete penetrance and predilection for males to lose vision imply
that additional genetic and/or environmental factors must
modulate the phenotypic expression of LHON (fig 2).
Alternatively, the gender bias could also result from a
combination of subtle anatomical, hormonal and physiological
variations between males and females.

Mitochondrial genetic factors

Heteroplasmy
Depending on their metabolic demands, cells can contain
anywhere between 100–10 000 mitochondria, and with
2–10 mtDNA molecules in each mitochondrion, this results in
a very high copy number per cell. In most LHON pedigrees, the
primary mutation is homoplasmic—that is, every mtDNA
molecule harbours the mutant allele. By contrast, 10–15% of
LHON carriers are thought to be heteroplasmic, with one
mtDNA sub-population carrying the wild type allele.14 20 79

Although limited and retrospective, the available data suggest
that heteroplasmy contributes to incomplete penetrance, with
the risk of blindness being minimal if the mutational load is
,60%.80 However, quantifying the level of heteroplasmy for the
purpose of pre-symptomatic testing is limited as the majority of
individuals with a LHON mutation are homoplasmic.

MtDNA haplogroups
MtDNA accumulates mutations ,10 times faster than nuclear
genome, resulting in a high degree of polymorphism.81 Because
human mtDNA is strictly maternally inherited and does not
recombine, polymorphisms have accumulated sequentially
along radiating female lineages as women migrated out of
Africa into the different continents ,150 000 years ago.82

Reflecting its evolution, a number of stable polymorphic
variants cluster together in specific combinations referred to
as haplogroups, with individuals of European ancestry belong-
ing to one of nine haplogroups: H, I, J, K, T, U, V, W and X.83 84

A recent meta-analysis of 159 European LHON pedigrees
indicated that the risk of visual loss for the three primary
LHON mutations is influenced by the mtDNA background.85

The risk of visual failure was greater when the m.11778G.A
and m.14484T.C mutations arose on haplogroup J, whereas
individuals with the m.3460G.A mutation were more likely to
experience visual loss if they belonged to haplogroup K. On the
other hand, individuals with the m.11778G.A mutation had a
lower risk of visual loss when the mutation arose on haplogroup
H. Haplogroups H, J and K are all defined by non-synonymous,
polymorphic substitutions in the MT-CYB gene which codes for
cytochrome b, the only mitochondrially encoded subunit of
complex III. Recent experimental data support the existence of
stable respiratory chain supercomplexes, one of which consists
of a complex I monomer physically interacting with a complex
III dimer. Although speculative, the haplogroup associated
amino acid substitutions within cytochrome b could therefore
influence the risk of visual failure by modulating the biochem-
ical consequences of the primary LHON mutations through an
effect on the stability of these putative I-III supercomplexes.85–87

In support of this hypothesis, cybrid cell lines carrying the
m.11778AG.A mutation on a haplogroup J background had a
lower oxygen consumption and a longer doubling time
compared to non-haplogroup J cell lines.88 However, haplogroup
J was not found to further impair mitochondrial OXPHOS in
the brain and skeletal muscle of patients harbouring the
m.11778G.A mutation with 31P-MRS measurements,66 and a
study of South-East Asian LHON pedigrees found no associa-
tion between specific mtDNA haplogroups and the risk of visual
loss.89 These contradictory findings reflect the need for
additional studies to clarify the significance of the mtDNA
background on LHON penetrance.

Nuclear genetic factors
The predominance of affected males in LHON cannot be
explained by mitochondrial inheritance and segregation analysis
suggests the existence of a recessive X-linked susceptibility gene
acting in synergy with the mtDNA mutation to precipitate
the optic neuropathy.90–92 In the Bu and Rotter model, the

Figure 2 Secondary factors interacting
with the primary mtDNA Leber hereditary
optic neuropathy mutation to precipitate
visual loss. ATP, adenosine triphosphate;
ROS, reactive oxygen species.
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development of blindness in males is consistent with the
simultaneous inheritance of an X-linked visual loss allele and
the primary LHON mutation, whereas females are affected
either if they are homozygous at the susceptibility locus (40%)
or heterozygous with skewed X chromosome inactivation of the
wild-type allele (60%). Several studies have, however, failed to
demonstrate any skewed X chromosome inactivation in affected
female carriers, albeit in blood leucocytes and not in RGCs
which are the affected tissues in LHON.93–95 Initial attempts to
identify this X-linked susceptibility locus by standard linkage
analysis were unsuccessful,96–99 but two recent studies using a
larger number of more extensively defined LHON pedigrees
found two overlapping disease loci with highly significant LOD
scores at Xp21–Xq21100 and Xq25–27.2.101 Although the actual
causative gene in this region of interest has not yet been
identified, a high risk haplotype [DXS8090(166)-DXS1068(268)]
at Xp21 was defined which increased the risk of visual failure
,35-fold for the m.11778G.A and m14484T.C mutations but
not for m.3460G.A.100 The possibility of other autosomal
nuclear modifier genes in LHON has not been excluded and the
genetic aetiology of LHON might prove even more complex,
with epistatic interaction of these multiple nuclear suscept-
ibility loci and genetic heterogeneity.

Environmental factors
Five pairs of monozygotic twins harbouring a primary LHON
mutation have been reported in the literature, and in two cases
the twins have remained discordant.20 21 24 102–104 Although there
is always the possibility that the unaffected sibling will lose
vision later on in life, the existence of discordant monozygotic
twins strongly suggests that environmental factors also
contribute to penetrance. There are several reports of an
increased risk of visual loss among LHON carriers with high
tobacco and alcohol consumption,105–108 but the largest case–
control study to date has failed to confirm this association.109

There are also anecdotal reports of nutritional deprivation,
exposure to industrial toxins, antiretroviral drugs, psychological
stress or acute illness precipitating the onset of blindness in
LHON.108 110–112 Of note, in some pedigrees the penetrance of
LHON seems to be decreasing, falling to 1% and 9% in younger
generations of two large, multi-generational pedigrees from
Australia113 and Brazil,108 114 respectively. Both carry homoplas-
mic levels of the m.11778G.A mutation and this phenomenon
has been ascribed to improved environmental and socio-
economic factors. However, a much larger epidemiological
study of 3613 LHON carriers from multi-generational pedigrees
failed to detect a change in the penetrance of the three primary
LHON mutations. The role of environmental triggers in LHON
remains largely unanswered and more robust epidemiological
data are needed, which will necessitate a multicentre collabora-
tive effort in order to collect sufficient number of subjects for
analysis.

Treatment
No generally accepted measures have been shown to either
prevent or delay the onset of blindness in LHON, but for general
health reasons LHON carriers should be advised to moderate
their alcohol intake and stop smoking. In two small case series,
oral administration of idebenone, a synthetic analogue of
coenzyme Q10, and vitamin B12 and C supplementation led
to faster and greater visual recovery among affected indivi-
duals.115 116 However, a recent study has not found any
improved visual prognosis from idebenone and multivitamin

supplementation, and properly conducted treatment trials are
needed before such a regimen can be advocated.117 The use of
brimonidine eye drops, which is thought to have anti-apoptotic
properties, was also unsuccessful in preventing second eye
involvement in recently affected patients with unilateral optic
neuropathy.118 The long term management of visually impaired
patients remains supportive, with provision of visual aids and
registration with the relevant social services.

Genetic counselling
It is important to stress to LHON carriers that it is not possible
to predict accurately whether or when they will become
affected. Despite these caveats, the two main predictive factors
for visual failure remain age and gender, with males having
about a 50% lifetime risk of blindness compared to only 10% for
females, and these approximate figures can be further refined
based upon the patient’s age. From published age dependent
penetrance data, most patients experience visual loss in their
late teens and 20s and the probability of becoming affected
decreases with increasing age, being minimal once past the age
of 50 years (table 2). Once a primary LHON mutation has been
identified in a proband, other maternally related family
members can be offered molecular genetic testing to exclude
the possibility of a de novo mutation, which is rare. Since
LHON shows strict maternal inheritance, male carriers can be
reassured that none of their children will inherit the mtDNA
mutation whereas female carriers will transmit the pathogenic
mutation to all of their offspring. Since most mothers are
homoplasmic, their children will only harbour the mutant
species, but the situation is more complex for a heteroplasmic
mother as she could transmit a higher or a lower level of the
mutation to a particular offspring, which will impact on the
latter’s risk of visual failure. Although the mutant level can be
determined and there is evidence that a mutational threshold of
,60% in blood is necessary for disease expression, genetic
counselling for these unaffected heteroplasmic carriers remains
difficult. For similar reasons, the prenatal genetic testing of
heteroplasmic women with amniocentesis or chorionic villus
sampling (CVS) would be difficult to interpret.

DOMINANT OPTIC ATROPHY

Clinical features
The clinical features of DOA (OMIM 165500) were first
described in one British family by Batten in 1896119 120; the
phenotype was further clarified by Kjer in his extensive study of
Dutch families in the 1950s,119 120 distinguishing it from LHON
with which the disease was often confused. The prevalence of
DOA is not well established and robust estimates based on
molecular confirmation are not available, although a historical
figure of 1 in 50 000 among Caucasians is often quoted in the
literature.121 It is thought to be the most common inherited
optic neuropathy in the Netherlands, with a population
frequency of 1 in 12 000, and this much higher prevalence has
been linked to a mutational founder event.122

The onset of symptoms in DOA is relatively insidious. In pre-
molecular case series, 13–25% of patients with optic atrophy
were visually asymptomatic and were only identified through
contact tracing via other affected family members.123 124

Classically, the visual decline starts in the first two decades of
life, but there is a pronounced inter- and intra-familial
variability in the severity of visual symptoms, which makes
genetic counselling difficult. Visual acuity can range from 6/6 to
the detection of hand movement only, and the rate of
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progression of visual loss is not easy to predict, with 19–50% of
patients experiencing further, albeit slow, deterioration on long
term follow up.125–129 Although the overall visual prognosis is
better when compared to LHON, with a mean visual acuity of
6/24–6/36, DOA results in significant visual impairment with
about half of all affected individuals failing the driving
standards and 13–46% registered as legally blind.130–132

The predominant colour defect in DOA is a generalised
dyschromatopsia, involving both the blue–yellow and red–green
axes, with a minority of patients having pure tritanopia
(,10%), which was once considered to be a pathognomonic
feature of DOA.133 Central, centrocaecal and paracentral
scotomas are the most common field abnormalities with sparing
of the periphery, findings consistent with the primary involve-
ment of the papillomacular bundle in this condition.
Interestingly, as in LHON, there is usually no afferent pupillary
defect, suggesting that the retino-tectal fibres sub-serving the
pupillary light reflex are less susceptible to the downstream
effects of both the LHON mtDNA mutations and the causative
nuclear genetic defects in DOA.134 However, both magnocellular
and parvocellular RGC pathways seem to be similarly affected,
although this requires further investigation.127 131

The optic disc pallor in DOA falls into two main categories:
diffuse pallor involving the entire neuro-retinal rim in about half
of all cases, and a temporal wedge in the remainder (fig 3).123 135

However, disc pallor can be subtle and 29% of affected patients
had normal looking optic discs in one case series, highlighting
the need to look carefully for other features of optic nerve
dysfunction when assessing patients with a possible diagnosis
of DOA.132 Other common optic disc findings include saucerisa-
tion (79%), peripapillary atrophy (69%) and a cup to disc ratio
.0.5 (48%).131 135 136 The measurement of circumpapillary retinal
nerve fibre layer thickness using optical coherence tomography
(OCT) could also prove a useful adjunct in the diagnostic work-
up of DOA, with recent studies showing a typical profile with
bilateral symmetrical thinning around the optic disc, most
pronounced in the temporal quadrant.137 138

Ocular pathology
Postmortem studies of two patients with DOA identified
similar histopathological changes, with diffuse atrophy of the
RGC layer, loss of myelin and fibrillary gliosis along the anterior
visual pathways extending to the lateral geniculate body.139 140

More recent MRI data from patients with DOA have also
confirmed significant tissue loss and thinning of the optic nerve
along its entire length.141 Although less pronounced, the

underlying ocular pathology in DOA is therefore remarkably
similar to LHON, with the primary loss of RGCs leading to
ascending optic atrophy.

Visual electrophysiological findings are well documented in
DOA and provide additional evidence for the primary loss of
RGCs and the sparing of the outer retinal layers.133 142 143 It can
therefore be a useful ancillary test when determining affected
status in borderline DOA cases and also in excluding a primary
retinal process such as early cone dystrophy. VEPs are either
absent or, if traces are recordable, they are of low amplitudes
with abnormal latencies. PERGs can be within the normal range
in up to 40% of clinically affected individuals but usually
demonstrate an abnormal P50:N95 ratio, with selective depres-
sion of the N95 negative wave amplitude confirming a primary
optic nerve pathology. Additional involvement of the P50
component correlates with the severity of visual loss, but PERGs
are not extinguished even in cases where visual acuity is reduced
to detection of hand movements or worse.

Molecular genetics
The majority of DOA families show linkage to the OPA1 locus
at 3q28–q29, and in 2000 two independent research groups
identified pathogenic mutations in the OPA1 gene.144 145 The
proportion of OPA1 positive families is ,60% (range 32–89%),
the lower detection rates in some of these case series reflecting
the inclusion of singleton cases, a heterogeneous group that is
more likely to include non-inherited forms of optic neuropathy,
and the use of less sensitive mutation screening protocols such
as single strand conformational polymorphism (SSCP) analy-
sis.146 147 Interestingly, a recent report suggested that large scale
rearrangements of entire OPA1 coding regions could account for
up to 20% of all OPA1 negative cases.148

The causative nuclear defects in the remaining families with
DOA have not yet been identified, but a small number of
families have been mapped to other chromosomal loci—OPA3,
OPA4, OPA5 and OPA7, of which only the OPA3 gene has been
characterised (table 4). The OPA3 gene was originally identified
in eight Iraqi Jewish families with an autosomal recessive form
of optic atrophy, associated with neurocognitive deficits,
elevated urinary excretion of 3-methyl glutaconic acid, and
increased plasma 3-methylglutaric acid levels (type III 3-
methylglutaconic aciduria or Costeff syndrome).149–151

However, pathogenic mutations in the OPA3 gene have also
been identified in two French families segregating both DOA
and premature cataract in an autosomal dominant mode of
inheritance (ADOAC).152 153 The Opa3 protein is located in the

Figure 3 Typical fundal appearance in
dominant optic atrophy showing bilateral
optic disc pallor more marked in the
temporal quadrant (LE, left eye; RE, right
eye; T, temporal quadrant).
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mitochondrial inner membrane but its exact function remains
to be clarified. Preliminary findings in cultured fibroblasts from
a patient with ADOAC indicate an increased susceptibility to
apoptosis, and one can speculate that a similar mechanism is
leading to RGC dysfunction via disruption of the mitochondrial
respiratory chain.152 154 155

OPA1 mutations
The OPA1 gene consists of 30 exons spanning over 100 Kb of
genomic DNA and it codes for a 960 amino acid, dynamin
related GTPase protein located within the inner mitochondrial
membrane. Alternative splicing of exons 4, 4b and 5b result in
eight different mRNA isoforms, and both their functional
relevance and subcellular localisation are currently being
investigated.156 Over 140 pathogenic mutations have been
identified and these cluster in two specific regions: the
GTPase region (exons 8–15) and the C-terminus which is the
proposed site of the GTPase effector domain. The majority of
OPA1 mutations (,50%) lead to premature termination codons
(PTCs) as a result of nonsense mutations or frameshifts from
small insertions, deletions or splice site mutations (eOPA1
database at http://lbbma.univ-angers.fr/lbbma.php?id = 9).157

These truncated mRNAs are unstable and get degraded by
specific pathways (nonsense mediated mRNA decay), which are
in-built protective cellular mechanisms against mutant proteins
with possible dominant negative effects.158–160 The reduced Opa1
protein expression levels observed in these cases support the role
of haploinsufficiency in DOA and this is further substantiated
by one family with a microdeletion resulting in complete loss of
one copy of the OPA1 gene.161 However, ,30% of OPA1
mutations are missense mutations within or close to the
GTPase domain and these could exert their pathogenic effect
via a deleterious, gain of function mechanism.162–164

Gene expression
The spatial localisation and expression pattern of the Opa1
protein have been examined in a wide range of post-mitotic
human and murine tissues. The Opa1 protein is highly
expressed in the RGC layer but it is also found at comparable
levels in the photoreceptor, inner and outer plexiform retinal
layers.165 166 In the human optic nerve, Opa1 was detected along
the axonal tracts both in the pre- and post-lamina cribosa
regions.167 168 The Opa1 protein is ubiquitous and abundant
levels have been identified in non-ocular tissues such as the
inner ear and various areas of the human brain, with a similar
distribution pattern of the different isoforms.169 170 Overall, these
immunohistochemical studies indicate that differential tissue
expression of the OPA1 gene or its isoforms do not seem to
underlie the selective vulnerability of RGCs in DOA.

Protein function
The Opa1 protein is part of the large, dynamin GTPase family
of mechanoenzymes and it was first identified in a screen for

nuclear genes required for mtDNA maintenance in the budding
yeast Saccharomyces cerevisiae. Both the human and yeast
(Mgm1+) homologues show a high degree of evolutionary
conservation and functional studies in DOA have revealed
several other important cellular roles in addition to mtDNA
maintenance.171 172

Mitochondrial maintenance
Opa1 is an important pro-fusion protein and works in tandem
with other members of the dynamin related mitofusin family
(mfn-1 and mfn-2) to balance the pro-fission effects of other
GTPases such as Drp1 and Fis-1.173 174 It is therefore not
surprising that mitochondrial network disruption is a key
pathological feature seen in fibroblasts from DOA patients and
other tissue cultures, including RGCs, where the expression of
the Opa1 protein has been disrupted—for example, by small
interfering RNAs.162 170 175 176 Instead of a typical elongated,
filamentous mitochondrial network, the latter becomes highly
fragmented, with isolated mitochondria showing aberrant
balloon-like enlargements. Transmission electron microscopy
(TEM) also confirms altered mitochondrial ultrastructure with
abnormal mitochondrial cristae organisation and paracrystalline
inclusion bodies.162

Fusion is postulated to subserve a protective biological
function by allowing the exchange and complementation of
mitochondrial contents.177 178 In this respect, neuronal cells with
deficient mitochondrial fusion show a loss of mtDNA nucleoids
and this important finding provides a possible disease mechan-
ism, with the reduced expression of essential, mtDNA encoded,
respiratory chain subunits resulting in a bioenergetic deficit,
increased ROS levels and a greater susceptibility to undergo
apoptosis.179 180 These deleterious consequences could also
contribute to the formation and clonal expansion of secondary
mtDNA abnormalities such as mtDNA deletions, which have
recently been identified in a subgroup of DOA families with a
more complex multi-system involvement in addition to the
optic neuropathy.162–164

Oxidative phosphorylation
Impaired mitochondrial biogenesis is central to the pathophy-
siology in DOA and there is good experimental evidence to
support a predominant complex I defect. There is reduced
mitochondrial membrane potential and ATP synthesis in
fibroblast cultures carrying pathogenic OPA1 mutations,181 182

and in vivo disturbance of oxidative metabolism was evident in
the calf muscle of patients with DOA using 31P-MRS.183

Immunoprecipitation studies also suggest that the Opa1
protein, in conjunction with other structural proteins such as
the apoptosis inducing factor (AIF), interacts directly with
complexes I, II and III and plays an important role in the
assembly and stabilisation of their various component sub-
units.176 This provides another causal link between OPA1
mutations and the resulting mitochondrial respiratory chain
defect in DOA.

Table 4 Dominant optic atrophy loci reported in OPA1 negative families

OMIM Reported locus
Causative
gene Families (n) Clinical features Reference

OPA-3 606580 19q13.2–q13.3 OPA3 2 Optic atrophy + premature cataract 152

OPA-4 605293 18q12.2–q12.3 Unknown 1 Optic atrophy* 250

OPA-5 610708 22q12.1–q13.1 Unknown 2 Optic atrophy* 251

OPA-7 – 16q21–q22 Unknown 1 Optic atrophy + deafness 252

*Similar clinical phenotype to OPA1 positive families.
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Apoptosis
Apoptosis is the final common pathway leading to RGC loss in
DOA and cell death is likely be complex, being triggered by a
combination of several interacting factors. Opa1 is processed by
various, inner membrane proteases which include the presenilin
associated rhomboid-like protein (Parl) and paraplegin, and this
proteolytic cleavage results in a soluble, intermembrane form in
addition to the integral, membrane bound form.184–186 These two
proteins combine into oligomers which modulate the morphol-
ogy of the inner mitochondrial membrane and the tightness of
the cristae junctions, a process independent of the role of Opa1
in controlling fusion.187 Downregulation of Opa1 leads to
aberrant cristae remodelling and the release of cytochrome c
which is normally sequestered in the narrow junctions within
the cristae.175 188 This will either be sufficient on its own to
induce the apoptotic cascade or will sensitise the cell to other
pro-apoptotic stimuli such as AIF, increased ROS or the
dissipation of the mitochondrial membrane potential.

Animal models
There are now two established mouse models of DOA, with
heterozygous mutations in exon 8 (c.1051C.T) and intron 10
(c.1065+5g.a) of the OPA1 gene.189 190 These two mutations are
truncative, resulting in a 50% reduction in the expression of the
Opa1 protein, and therefore represent a haploinsufficiency
disease mechanism. In both models, homozygous mutant mice
(OPA12/2) died in utero during embryogenesis, highlighting
the central role played by the Opa1 protein in early develop-
ment. Heterozygous OPA1+/2 mice faithfully replicated the
human phenotype exhibiting a slowly progressive optic neuro-
pathy and demonstrating objective reduction in visual function
on psychophysical testing. There was a gradual loss of RGCs,
leading to thinning of the retinal nerve fibre layer, and the
surviving optic nerve axons had an abnormal morphology with
swelling, distorted shapes, irregular areas of demyelination and
myelin aggregates. Mitochondria within these axons showed
disorganised cristae structures on TEM and cultured fibroblasts
showed fragmentation of the mitochondrial network. These
two OPA1 mouse models represent powerful tools for dissecting
the pathways mediating the preferential loss of RGCs in DOA,
by allowing functional studies to be performed directly on these
specialised cells, something which is not possible in humans
given the lack of ocular tissues. These mutant mice will also
prove useful when investigating the potential therapeutic
benefit of future biological agents which could be injected into
the vitreous cavity, allowing direct access with the RGC layer.

Expanding phenotype
The hallmark of DOA is bilateral visual failure, but sensor-
ineural deafness is a well reported association which is more
commonly observed with some pathogenic mutations such as
the p.R445H mutation.191–193 In his original description, Kjer also
documented neurodevelopmental abnormalities in 10% of his

Dutch cohort, although this has not been reported in other
populations.120 125 More recently, DOA families have been
described where the optic atrophy was segregating with
additional ocular and extraocular features such as progressive
external ophthalmoplegia, ptosis, myopathy, ataxia, neuropa-
thy, and an MS-like disorder.162–164 194 These syndromal variants
of DOA, so-called ‘‘DOA plus’’, have been linked with the
accumulation of multiple mtDNA deletions, a finding consis-
tent with the presence of cytochrome c oxidase (COX) deficient
fibres in limb muscle biopsies from affected individuals.195 All of
the causative OPA1 mutations in these families were missense
mutations with most, but not all of them, within the catalytic
GTPase site of the protein. Although the actual proportion of
families with these ‘‘DOA plus’’ phenotypes is as yet unknown,
clinicians need to be aware of these additional clinical features
as these can be subtle and therefore easily missed if not looked
for specifically.

Genetic counselling
There is currently no treatment to influence the disease process
in DOA and clinical management, as for LHON, is supportive.
Despite DOA being an autosomal dominant Mendelian
disorder, genetic counselling for mutational carriers is difficult
because of the pronounced inter- and intra-familial variability in
the visual phenotype. There are no definite genotype–pheno-
type correlations but missense mutations within the GTPase
protein domain are more likely to result in a complex, multi-
systemic involvement, although it must be stressed that this
observation requires further investigation in a larger cohort of
DOA families.

With the availability of molecular testing for OPA1 becoming
more accessible, an increasing number of individuals with
pathogenic mutations are being identified who are otherwise
visually unaffected. The penetrance is .80% in well charac-
terised, multi-generational families but figures as low as 43%
have been reported, probably reflecting the different assessment
criteria used (range 43–100%).132 196 197 This incomplete pene-
trance together with the variable clinical expressivity in both
pure DOA and ‘‘DOA plus’’ families clearly imply that other, as
yet unidentified, secondary factors are potentiating the deleter-
ious effects of the OPA1 mutations.

MITOCHONDRIAL OPTIC NEUROPATHIES
The concept of inherited mitochondrial optic neuropathies is
expanding with evidence of impaired mitochondrial function in
other genetic diseases where optic nerve dysfunction is a
recognised clinical feature (table 5). These include: (1)
Friedreich’s ataxia where up to a third of cases have an optic
neuropathy198 199; (2) hereditary motor and sensory neuropathy
type 6 (HMSN-6), a variant of Charcot–Marie–Tooth (CMT)
disease defined by the presence of both optic atrophy and
peripheral neuropathy200 201; and (3) the hereditary spastic
paraplegias (HSP).202–204

Table 5 Other inherited optic neuropathies linked to mitochondrial dysfunction

Disease OMIM Inheritance Gene (protein) Protein function References

Friedreich’s ataxia 229300 Ar FXN (frataxin) Component of iron-sulfur clusters: regulation of mitochondrial respiratory chain
activity and anti-oxidant properties

253, 254

HMSN-6 601152 Ad MFN2 (mitofusin-2) Mitochondrial outer membrane GTPase: pro-fusion protein involved in
maintenance of the mitochondrial network and mtDNA nucleoids (cf Opa1)

216, 217, 255

HSP-7 607259 Ar SPG7 (paraplegin) Mitochondrial inner membrane protease: cleavage of Opa-1, control of
mitochondrial ribosomal assembly and degradation of misfolded proteins

219, 256

Ar, autosomal recessive; Ad, autosomal dominant.
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Glaucoma is the second most common cause of blindness in
developed countries and accounts for about 10% of all blind
registration in the UK.205 It is a primary, acquired optic
neuropathy with a strong genetic component and OPA1
mutations have been identified in a number of patients initially
diagnosed with normal tension glaucoma, highlighting the
similarities in optic disc features shared with DOA.206 207 It is of
note therefore that some studies have shown an association
between the risk of developing glaucoma and certain OPA1
polymorphic variants,208–210 with other investigators reporting
mtDNA abnormalities in their glaucoma cohorts, such as an
increased mtDNA copy number and reduced respiratory chain
activities in peripheral blood lymphocytes.211 Although further
studies are needed, these findings suggest a possible mitochon-
drial influence on the pathogenesis of glaucoma.

UNIFYING HYPOTHESIS
The common theme in the various optic neuropathies described
in this review is the vulnerability of RGCs to mitochondrial
dysfunction. Although there is a high level of mitochondrial
enzyme activity in RGCs,212 this phenomenon cannot be
explained by a simple energetic deficit since photoreceptors
have a much higher oxidative demand than RGCs and other
mitochondrial disorders characterised by more severe complex I
defects do not universally cause optic atrophy. It is possible that
RGCs are preferentially involved because they are more
sensitive to subtle imbalances in cellular redox state or increased
ROS levels, but an attractive hypothesis implicates the
differential mitochondrial concentration observed at the lamina
cribosa.213 The lamina cribosa is a perforated collagen plate that
marks the anatomical transition from the unmyelinated (pre-
laminar) to the myelinated (post-laminar) segment of the
human optic nerve. The pre-laminar section has a much higher
concentration of mitochondria to support the higher energy
demands of unmyelinated nerve conduction and it is likely that
active processes involving the cytoskeletal architecture are
needed to maintain this sharp mitochondrial gradient.214 215

Pathological mechanisms which disrupt this unique structural
feature would lead to impaired axonal transport, as seen in
CMT179 216 217 and HSP,218 219 and set up a vicious circle with
fragmentation of the mitochondrial network at the lamina
cribosa exacerbating even subtle mitochondrial energy deficits
and eventually precipitating apoptotic cell death.

CONCLUSION
LHON and DOA show an intriguing degree of clinical and
mechanistic overlap, with both disorders caused by the selective
degeneration of the RGC layer. They are the two most common
inherited optic neuropathies and they provide strong evidence
that the maintenance of RGCs is heavily dependent upon
normal mitochondrial function. This is further substantiated by
recent studies pointing towards a mitochondrial link in sporadic
glaucoma and other genetic disorders where optic nerve
dysfunction is a prominent clinical feature. Although major
advances have been achieved in the two decades since the
primary LHON mutations were identified, several key questions
remain unanswered. What secondary factors account for the
notable incomplete penetrance and male bias in LHON? What
explains the variable disease expression in DOA, and why is
there no gender bias in this disorder, given the similarity to
LHON? What are the causative nuclear genes in OPA1-negative
families and will they also involve mitochondrial dysfunction?
What mechanisms underpin the preferential loss of RGCs in

these mitochondrial optic neuropathies? The characterisation of
recently developed animal models and future genetic and
functional studies will hopefully reveal important pathophy-
siological pathways amenable to therapeutic interventions.
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Correction

P Yu-Wai-Man, P G Griffiths, G Hudson, et al. Inherited mitochondrial optic neuropathies.
J Med Genet 2009;46:145e58. Errors appeared in the first paragraph of the ‘Clinical features’
section in this paper. The correct paragraph should read as follows:

‘The clinical features of DOA (OMIM 165500) were first described in one British family by
Batten in 1896119 120; the phenotype was further clarified by Kjer in his extensive study of
Danish families in the 1950’s,119 120 distinguishing it from LHONwith which the disease was
often confused. The prevalence of DOA is not well established and robust estimates based on
molecular confirmation are not available, although a historical figure of 1 in 50,000 among
Caucasians is often quoted in the literature.121 It is thought to be the most common inherited
optic neuropathy in Denmark with a population frequency of 1 in 12,000, and this much
higher prevalence has been linked to a mutational founder event.122’
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