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ABSTRACT
Background Leucocyte telomere length (LTL), which is
fashioned by multiple genes, has been linked to a host
of human diseases, including sporadic melanoma. A
number of genes associated with LTL have already been
identified through genome-wide association studies. The
main aim of this study was to establish whether DCAF4
(DDB1 and CUL4-associated factor 4) is associated with
LTL. In addition, using ingenuity pathway analysis (IPA),
we examined whether LTL-associated genes in the
general population might partially explain the inherently
longer LTL in patients with sporadic melanoma, the risk
for which is increased with ultraviolet radiation (UVR).
Results Genome-wide association (GWA) meta-analysis
and de novo genotyping of 20 022 individuals revealed
a novel association (p=6.4×10−10) between LTL and
rs2535913, which lies within DCAF4. Notably, eQTL
analysis showed that rs2535913 is associated with
decline in DCAF4 expressions in both lymphoblastoid
cells and sun-exposed skin (p=4.1×10−3 and 2×10−3,
respectively). Moreover, IPA revealed that LTL-associated
genes, derived from GWA meta-analysis (N=9190), are
over-represented among genes engaged in melanoma
pathways. Meeting increasingly stringent p value
thresholds (p<0.05, <0.01, <0.005, <0.001) in the
LTL-GWA meta-analysis, these genes were jointly over-
represented for melanoma at p values ranging from
1.97×10−169 to 3.42×10−24.
Conclusions We uncovered a new locus associated
with LTL in the general population. We also provided
preliminary findings that suggest a link of LTL through
genetic mechanisms with UVR and melanoma in the
general population.

INTRODUCTION
As expressed in leucocytes, telomere length (TL) is a
polygenic trait with heritability estimated at 65%.1

Genome-wide association (GWA) meta-analyses
identified nine loci associated with leucocyte TL
(LTL).2–4 Of these, at least six harbour genes
(TERC, TERT, NAF1, OBFC1, CTC1 and RTEL1)
directly related to telomere homeostasis. LTL, which
reflects TL in other somatic cells,5 is associated with
a host of disease. Typically, LTL is short in patients

with cardiovascular disease, principally atheroscler-
osis,6 and long in patients with lung adenoma,7 8

breast cancer,9 10 pancreatic cancer11 and sporadic
melanoma.12 13 Moreover, highly penetrant germ-
line mutations in the telomere maintenance genes
POT1 and TERT have been recently shown in
patients with familial melanoma.14–16

In our previous LTL meta-GWA, we found that a
single-nucleotide polymorphism (SNP) (rs2535913)
lies within the gene encoding the DDB1 and
CUL4-associated factor 4 (DCAF4) had a barely sug-
gestive association with LTL.4 In the present study, we
present further analysis of rs2535913 through de
novo genotyping and in silico look up. As DDB1 and
CUL4 are engaged in the response to ultraviolet radi-
ation (UVR)17 18 and given that the risk for sporadic
melanoma is increased with an inherently longer
LTL12 13 and UVR,19–21 we also examined whether
rs2535913 is associated with altered expression of
DCAF4 in lymphoblastoid cells and sun-exposed skin
and whether LTL-associated genes, in general, might
also be associated with genes engaged in melanoma
pathways.

MATERIALS AND METHODS
Cohorts
A detailed description of demographic character-
istics of all cohorts included in this study can be
found in online supplementary table S1. Additional
details related to the discovery and the replication
cohorts can be found elsewhere.2 4

In brief, for the discovery data, rs2535913 was
extracted from the summary results of a large GWA
consortium meta-analysis including six cohorts (the
Framingham Heart Study, the Family Heart Study,
the Cardiovascular Health Study, the Bogalusa
Heart Study, the Hypertension Genetic
Epidemiology Network Study and TwinsUK). All
the cohorts adjusted for the same covariates (age,
age2, sex, smoking history).4 All the samples
included in the meta-analysis were of European
descent (evidence of non-European ancestry was
assessed by principal component analysis compari-
son with HapMap in each cohort).
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LTL measurement was performed by Southern blot analysis of
the mean length (expressed in kilobases) of the terminal restric-
tion fragments, generated by the restriction enzymes HinfI and
RsaI after verification of DNA integrity.22 The de novo genotyp-
ing of rs2535913 was conducted on 3037 samples from differ-
ent cohorts (Israeli Jews from the Jerusalem LRC Longitudinal
Study23 and Palestinians from the Palestinian-Israeli Jerusalem
Risk Factor Study24 , Frenchmen from the ADELAHYDE—
Nancy study and ERA—France study,25 and Danes from a popu-
lation sample of Danish twins).26–31 LTL for these individuals
was measured by Southern blots, as in the discovery data set. In
the second phase of replication, we performed an in silico
look-up of results of LTL-GWAS based on 7795 European
descent individuals from four independent cohorts (British
Heart Foundation Family Heart Study, Queensland Institute of
Medical Research, Brisbane Adolescent Twin Study, United
Kingdom Blood Service and an independent sample set from
TwinsUK).2 Mean LTL of these samples was measured using a
qPCR-based technique (ref. 2 and expressed as a ratio of telo-
mere repeat length (T) to a copy number of a single copy gene
(S)). A calibrator sample or a standard curve was used to stand-
ardise T/S results across plates. LTLs in each cohort were stan-
dardised using a Z-score transformation. All the cohorts were
also adjusted for age and sex in the main analysis.

LTL meta-analysis
The meta-analysis for the discovery stages was carried out previ-
ously using METAL.32 We used GWAMA (V.2.1)33 to test the
meta-analyses of all the cohorts in which LTL was measured
(either by Southern blots or qPCR). To this end, we used the
inverse variance weighted method to combine the cohort-
specific β-estimates. Because the meta-analysis of the entire data
set included samples in which LTL was assessed using two dif-
ferent methods, we used the random-effect inverse variance
method implemented in GWAMA. In addition, to test the pres-
ence and measure the amount of between-study heterogeneity,
we used two different metrics: Cochran’s Q statistic34 and I2.35

Expression analysis
We used the genome-wide expression data from the lymphoblas-
toid cell lines (LCLs) from the Multiple Tissue Human
Expression Resource (MuTHER).36 The expression values were
derived from a subset of twins from TwinsUK, which were also
included in the association analysis. The analysis was performed
on rs2535913 and the expression levels of DCAF4 using
MERLIN,37 taking into account the family structure. For this
analysis, the significance was defined as p<0.05, as only one
independent test was performed.

To validate our results in a different data set and to perform
tissue-specific (sun-exposed skin from lower leg) expression ana-
lysis, we used data from the Genotype-Tissue Expression
(GTEx) project online portal (http://www.gtexportal.org).38

Ingenuity pathway analysis
The meta-GWAS data set included in the ingenuity pathway ana-
lysis (IPA) Core analysis consisted of 99 773 SNPs that met
quality control and had a p value threshold of <0.05.

All SNPs mapping in coding region of a gene or within 2 kb
upstream/0.5 kb downstream of it were annotated. Using these
criteria, IPA successfully mapped 42 395 of the 99 773 initial
SNPs to genes. We compiled and analysed four subsets of genes
meeting increasingly stringent p value thresholds in the
meta-GWA of LTL (p<0.05: 7362 genes; p<0.01: 2846 genes;
p<0.005: 1771 genes; and p<0.001: 526 genes).

We then compared the LTL-associated genes included in the
generated subsets with the genes reported by the IPA Global
Canonical Pathway (database accessed on September 2014;
http://www.ingenuity.com) for melanoma. We finally generated a
p value using a 2×2 Fisher’s exact test comparing the disease vs
non-disease status in the LTL-associated genes and in the refer-
ence data set (see online supplementary figure S1). All p values
were corrected for multiple testing using the Benjamini–
Hochberg method.39

RESULTS AND DISCUSSION
Meta-GWAS findings in European descendants have already
indicated significant associations of LTL with SNPs mapped to
loci of TERC, OBFC1 and CTC1—key genes engaged in TL
regulation.2–4 Of the nine SNPs that displayed suggestive asso-
ciations with LTL (5×10−7<p<5×10−8) in our previous
meta-GWAS in 9190 European descendants,4 seven were
mapped to these three gene loci, while the remaining two
(rs2535913, p=2×10−7; rs2806040, p=2.61×10−7) lie within
DCAF4. Because both DCAF4 variants were in perfect linkage
disequilibrium (r2=1) (see online supplementary table S2), we
focused our attention on rs2535913 and further examined its
association with LTL in eight additional cohorts.

We first de novo genotyped 3037 samples from four inde-
pendent cohorts in which LTL was measured by Southern blots.
We found a borderline significant association (possibly due to
the small sample size) of the rs2535913 minor allele (A) with
short LTL (β=−0.0343; p=6.13×10−2; table 1).

The overall meta-analysis of the discovery and de novo geno-
typed cohorts showed a genome-wide significant p value of
2.31×10−8. We then performed an in silico look-up of results
of LTL-GWAS based on 7795 individuals from four independent
cohorts in which LTL was measured by qPCR.2 Results showed

Table 1 Association of DCAF4 rs2535913 minor allele with leucocyte telomere length in discovery and replication cohorts

Analysis N MAF β (SE) SE p Value I2* (%) Het p†

Discovery 9190 0.3091 −0.0554‡ 0.011 2×10−7 18 0.30
Replication 1 (de novo genotyped data set) 3037 0.2743 −0.0343‡ 0.018 6.13 ×10−2 29 0.24
Combined (discovery+replication 1) 12 227 0.2991 −0.0505‡ 0.009 2.31×10−8 21 0.25
Replication 2 (qPCR data set) 7795 0.3144 −0.0451§ 0.017 7.84×10−3 0 0.70
Combined (all) 20 022 0.3061 −0.0493¶ 0.008 6.38×10−10 0 0.46

*Heterogeneity index I2 by Higgins et al.35

†Cochran’s heterogeneity statistic’s p value.
‡Effect reported in kb relative to the minor allele.
§Effect reported in (T/S) ratio relative to the minor allele.
¶Effect reported for the inverse-variance random-effect meta-analysis.
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an association of the rs2535913 minor allele with shorter LTL
(β=−0.0451; p=7.8×10−3) (table 1). The combined
meta-analysis, based on 20 022 individuals from the 14 inde-
pendent populations (6 in the discovery data set, 4 de novo gen-
otyped and 4 in silico look-up populations), showed a
significant association (β=−0.0493; p=6.4×10−10) of
rs2535913 with LTL.

Due to the different characteristics of the studies included in the
meta-analysis, we tested the between-study heterogeneity using
two different metrics (Cochran’s Q statistic and I2). Both methods
did not detect between-study heterogeneity (I2=0%; Cochran’s Q
p=0.46; table 1 and online supplementary figure S2).

Previous studies,2–4 as well as the present research, showcase
the large samples required to decipher the genetics of LTL in
the general population. Jointly, the few genes, including
DCAF4, that have been found thus far to be associated at a
genome-wide significance level with LTL explain <5% of the
inter-individual variation in LTL.2

In order to identify potential causal alleles in the coding
sequence, we looked for variants in tight linkage disequilibrium
with rs2535913 (LD; r2>0.9 in 1000 Genomes Project
European samples). We identified 15 SNPs (see online supple-
mentary table S2) of which only one (rs2806034) was in the
coding region causing a synonymous change (serine to serine) in
all the different DCAF4 transcripts. We also performed a condi-
tional analysis, including rs2535913 as a covariate, to identify
potential independent secondary signals at this locus. This ana-
lysis did not find any significant evidence for an independent
signal (see online supplementary figure S3).

Notably, rs2535913 is located within binding motifs for the
chromatin organising factor CTCF and Rad21 (see online sup-
plementary table S2).40 Rad21 is a component of the cohesin
complex involved in DNA repair, apoptosis and chromosome
cohesion during the cell cycle. CTCF and cohesin are both inte-
gral components of most human subtelomeric regions and have
been implicated in telomere maintenance.41

To explore the potentially functional impact of this intronic
SNP on DCAF4, we used genome-wide expression data from
MuTHER36 (http://www.muther.ac.uk/) based on 778 unse-
lected European descendant twins. We first focused our analysis
on LCLs. We found that the minor allele (A) of rs2535913 was
associated with lower expression of DCAF4 (β=-0.039,
p=4.1×10−3) (figure 1A). To validate our results in an inde-
pendent data set, we used data from the GTEx project online
portal (http://www.gtexportal.org).38 We found a significant

association (p=3×10−2) between rs2535913 and DCAF4
expression levels measured in whole blood of 167 individuals
(figure 1B).

DCAF4 interacts with DDB1 and CUL4.18 This interaction
suggests that DCAF4 may be involved in UVR response since
DDB1 and DDB2 serve as key detectors of UVR-induced DNA
damage and transcription-coupled repair pathways,17 18 while
cullins are engaged in ubiquitin-dependent protein degrad-
ation.42 We, therefore, examined rs2535913-DCAF4 expression
association specifically in sun-exposed skin (lower leg) tissue
included in the GTEx database. Notably, despite the small
sample size (n=113), we observed a significant association
(p=2×10−3) between rs2535913 minor allele and lower
DCAF4 expression levels in sun-exposed skin (figure 1C). Thus,
the finding of the LTL-DCAF4 link might be important not only
because it expands the repertoire of common SNPs associated
with LTL at genome-wide significant level, but also because it
may provide a possible link between TL, as expressed in leuco-
cytes, and UVR.

DDB1 modulates the transcription factor E2F1, which, in
turn, regulates cell proliferation and telomerase.43–45 Thus, cell
replication and telomere dynamics might be linked to pathways
engaged in UVR-induced DNA damage repair.46 In this context,
the association of LTL with DCAF4 might be mediated by tel-
omerase, perhaps via E2F1.43 44 45 That is because mutations
indicative of UVR damage in the promoter region of TERT are
common in melanoma tumours (but very rare in the germline)
and apparently generate consensus DNA binding sites, which
are targets not only of ETS transcription factors47 that direct
cytoplasmic signals to control gene expression but also E2F1.48

We have thus established that DCAF4 is an LTL-associated
gene and that rs2535913 minor allele is associated with
decreased DCAF4 expression in blood and sun-exposed skin,
which may suggest DCAF4 involvement in UVR response.
Given that LTL is inherently long in patients with melanoma12 13

and the increased risk for this cancer with UVR exposure,19 20 21

we sought further links between LTL-associated genes and mel-
anoma in the general population by testing a polygenic model
using the results of our large LTL meta-GWA.4 This model does
not require studying patients with melanoma and is based on
the following premise: <10% of melanoma cases are familial.49

However, based on research in twins, the heritability of sporadic
melanoma is approximately 55%.50 It follows that while familial
melanoma is caused by highly penetrant and rare germline
mutations, sporadic melanoma might result from the additive

Figure 1 rs2535913-DCAF4 expression analysis in (A) MuTHER lymphoblastoid cell line (LCL) samples; (B) whole blood and (C) sun-exposed skin
tissues using Genotype-Tissue Expression online database. Homo Ref, homozygous GG; Het, heterozygous GA; Homo Alt, homozygous AA.

Mangino M, et al. J Med Genet 2015;52:157–162. doi:10.1136/jmedgenet-2014-102681 159

Genome-wide studies
 on A

pril 26, 2024 by guest. P
rotected by copyright.

http://jm
g.bm

j.com
/

J M
ed G

enet: first published as 10.1136/jm
edgenet-2014-102681 on 26 January 2015. D

ow
nloaded from

 

http://www.muther.ac.uk/
http://www.muther.ac.uk/
http://www.gtexportal.org
http://www.gtexportal.org
http://jmg.bmj.com/


effect of common genetic variants in the general population,
each of which causally contributes a low risk for the disease.51

A proof of concept for this premise comes from a recent study
in 11 108 melanoma patients and 13 933 controls.52 The study
developed a genetic risk score for melanoma based on seven
LTL-associated genes, which had been derived from LTL-GWA
studies in the general population.2–4 Similarly, our polygenic
approach has been to take advantage of IPA Core analysis to
decipher connections of LTL-associated genes in the general
population with genes that had been reported to be engaged in
melanoma pathways. To this end, we analysed sets of
LTL-associated SNPs that met increasingly stringent p value
thresholds in our LTL meta-GWA , as described under
’Materials and methods’ (see online supplementary table S3).
We then compared the number of LTL-associated genes identi-
fied by IPA with the total number of genes related to melanoma
in the IPA reference set (see online supplementary figure S1).
We found that genes included in the melanoma pathway were
over-represented with p values ranging from 1.97×10−169

(LTL-associated SNPs p value <0.05) to 3.42×10−24

(LTL-associated SNPs p value <0.001) in each LTL-associated
gene subset (table 2 and see online supplementary figure S1).

LTL-associated genes were also enriched for genes included in
pathways of different types of cancers, although at much less
significance than that found for melanoma pathways. We
observed, for example, that genes included in the colorectal
cancer pathway were over-represented among LTL-associated
genes with p values ranging from 8.57×10−62 (LTL-associated
SNPs p value <0.05) to 1.28×10−6 (LTL-associated SNPs p
value <0.001).

While findings of a longer LTL in sporadic melanoma are
fairly consistent across studies, until recently, no consistency had
emerged from studies of the relationship between LTL and
other cancers.53 54 This might be because studies that examined
the association of LTL with cancer largely used leucocyte DNA
from patients that had already been subjected to chemotherapy,
irradiation or both, which probably impacted haematopoiesis
and consequently LTL.53 54 Moreover, sample sizes of the
majority of these studies were often too small, which limited the
ability to detect significant effects, particularly when qPCR was
used to measure telomere DNA content (due to the large meas-
urement error of this method).55 That being said, recent
large-scale prospective studies, which include pooled data, now
show that inherently long LTL is associated with lung adenoma,
as well as the cancers of breast and pancreas.7–11 Although
hardly applying to all cancers, these findings suggest that an
inherently longer LTL might not be unique to patients with mel-
anoma. Cancer is not a single disease, and its causes are multi-
factorial. Thus, the potential role of telomere biology in
carcinogenesis must be contextualised with specific circum-
stances that depend on the type of cancer, its anatomical

location, the age and sex of the individual and his/her overall
genetic makeup with respect to a host of heritable and environ-
mental risks.

In conclusion, the core findings of this work are (a) DCAF4 is
a novel gene that contributes to LTL variation in humans and
(b) its expression levels are altered in blood and sun-exposed
skin; the latter may suggest a potential role in UVR response.
We also provide preliminary evidence that genes associated with
LTL are enriched among genes engaged in melanoma pathways
in the general population. Our model might be useful in testing
the role of LTL genetics in other human cancers.
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