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ABSTRACT
Background: The Wolf-Hirschhorn syndrome (WHS) is
usually caused by terminal deletions of the short arm of
chromosome 4 and is phenotypically defined by growth
and mental retardation, seizures, and specific craniofacial
manifestations. Large variation is observed in phenotypic
expression of these features. In order to compare the
phenotype with the genotype, we localised the break-
points of the 4pter aberrations using a chromosome 4
specific tiling BAC/PAC array.
Methods: In total, DNA from 21 patients was analysed,
of which 8 had a cytogenetic visible and 13 a
submicroscopic deletion.
Results and conclusion: In addition to classical terminal
deletions sized between 1.9 and 30 Mb, we observed the
smallest terminal deletion (1.4 Mb) ever reported in a
patient with mild WHS stigmata. In addition, we identified
and mapped interstitial deletions in four patients. This
study positions the genes causing microcephaly, intra-
uterine and postnatal growth retardation between 0.3 and
1.4 Mb and further refines the regions causing congenital
heart disease, cleft lip and/or palate, oligodontia, and
hypospadias.

Wolf–Hirschhorn syndrome (WHS), first described
by Wolf et al1 and Hirschhorn et al,2 is usually
caused by a partial deletion of the short arm of
chromosome 4. It is a well known syndrome with
growth and mental retardation, microcephaly,
seizures, ‘‘Greek helmet’’ facies (fig 1), and major
malformations such as cleft lip and/or palate (CL/
P), coloboma of the eye, congenital heart defects
(CHD), and hypospadias. Large variation is
observed in phenotypic expression. These features,
especially the facial appearance, change with
ageing.3–7 The Pitt–Roger–Danks syndrome was
described as the milder end of the clinical spectrum
of the WHS.8 Although WHS affects around 1 per
50 000 births, it is suspected that the syndrome is
more frequent, because not all patients can be
diagnosed with a standard chromosomal investiga-
tion.8 In our experience, the incidence of WHS
patients is similar to the incidence of Angelman
syndrome patients—about 1 per 20 000 births. In
case of a clinical suspicion of WHS in a patient
with normal chromosomes, additional fluorescence
in situ hybridisation (FISH) studies of the sub-
telomeres and the WHS critical region (WHSCR)
are usually performed.

Different genes probably play an important role
in the complex phenotype of WHS. One approach

to understand the role of different genes is to
compare the phenotypes of patients with differ-
ently sized deletions and correlating the genotype
with the phenotype.5 9–14 Earlier genotype–pheno-
type correlation studies identified a WHSCR of
approximately 165 kb. This WHSCR covers the
entire WHS candidate gene 2 (WHSC2), and part of
the WHS candidate gene 1 (WHSC1).15 16 In a
recent study, this 165 kb WHSCR was not deleted
in one patient with a typical WHS face, which
prompted the investigators to assign a new critical
region of WHS, ‘‘WHSCR2’’. This region includes
the LETM1 and partially the WHSC1, but not the
WHSC2 gene.11 We reported on five mild WHS
patients with small deletions of chromosome 4p
covering or flanking the WHSCR, which also
pinpointed the WHSC1 as the main candidate for
causing the facial WHS appearance.12

Genotype–phenotype correlation studies suggest
that hemizygosity of genes other than WHSC1 in
the region contribute to some of the phenotypic
aspects. An overview of the genes in the region and
their potential contribution to the WHS pheno-
type was described before.14 CL/P, CHD, renal
abnormalities and severe mental retardation are
rare in patients with a small terminal microdele-
tion, but are common in patients with a larger
deletion extending to proximal of 4.4 Mb.10

However, which of these genes is responsible for
which phenotype remains unknown, with the
exception of LETM1 which is the most likely
candidate gene for epilepsy in WHS patients.17

In order to advance phenotype–genotype corre-
lation efforts, we present genotype–phenotype
correlations of eight previously reported and 13
new patients with WHS phenotypic features, and
characterised the location and size of the deletions
by full tiling chromosome 4 BAC array compara-
tive genome hybridisation (CGH) for all 21
patients. Previous genotype–phenotype correla-
tions of this region have been hampered by the
presence of other imbalances in part of the WHS
patients which likely confused some of the
correlations. In this study, only patients with pure
4p deletion were included, which enables us to
further refine the 4p phenotypic map.

PATIENTS AND METHODS

Patients
All 21 patients were diagnosed and clinically
examined by clinical geneticists in Brussels and
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Leuven (Belgium), Groningen (The Netherlands), Stockholm
(Sweden), and Paris and Lille (France). A personal and family
history was obtained from each patient. Most patients were
regularly re-evaluated during several years and follow up data
could be recorded. A summary of the clinical features for each
patient is provided in tables 1 and 2. Patient 5, 6, 8–11, 20 and 21
have been described elsewhere.12 18–22

Cytogenetic analysis
Karyotyping was performed on metaphase spreads prepared
from peripheral blood lymphocytes by routine standard
cytogenetic procedures.23

Fluorescence in situ hybridisation (FISH)
The deletion for all but two patients was confirmed using the
commercial LSI WHS region/CEP 4 control (dual colour)
(Abbott Inc, Downers Grove, Illinois, USA). The WHSCR
probe covering the entire 165 kb WHSCR between loci D4S166
and D4S3327 (Cytocell Technologies Ltd, Oxford, UK) was used
to analyse the metaphase spreads of patient 2. The metaphase
spreads of patient 1 have been tested with probe D4S96 (Oncor,
Parsippany, New Jersey, USA) located at ,1.2 Mb from the
telomere. Locus specific BAC or PACs were Spectrum Orange
labelled as described before.23

Array CGH
Genome wide array CGH at 1 Mb resolution was performed as
described before.23 A chromosome 4 tiling BAC array containing
1903 targets was generated as described elsewhere. The DNA
from these BAC and PAC targets was obtained from CHORI.24

Cy5 labelled patient DNA was co-hybridised versus Cy3
labelled reference DNA of a healthy individual. The fluorescence
intensities measured were first background subtracted.
Normalisation was performed by dividing each log2 transformed
intensity ratio by the mean of the log2 transformed intensity
ratios of all targets derived from the long arm of chromosome 4.
In about one third of the hybridisations, an additional 2D
normalisation was performed using Bioconductor (http://www.
bioconductor.org).25 26 If successive clones have intensity values
below 46 SD of all intensity ratios, the region is considered
deleted. Hybridisation efficiencies of the chromosome 4 tiling
array were around 97%. The average standard deviation of the
log2 intensity ratio per experiment was 0.08. Graphs of the
array-CGH analysis of DNA from a patient with a small
terminal and a cytogenically visible interstitial deletion are
provided in fig 2.

RESULTS

Genotype–phenotype correlation
In this study, we aim to correlate the WHS phenotypes with 4p
deletion sizes and therefore excluded patients carrying un-
balanced translocations or other chromosomal rearrangements
which may influence the phenotypic features.13 About one of
five WHS patients were a carrier of a cryptic translocation. The
presence of unbalanced translocations was excluded by sub-
telomeric FISH for patients 5, 6, 10, 11, and 21,12 20 and both
subtelomeric and interstitial chromosomal rearrangements were
excluded by 1 Mb array CGH in the other patients. Thus, only
those patients with pure 4p deletions were retained in this
study. Subsequently, DNA from patients was hybridised on a
chromosome 4 tiling array.

Figure 1 Facial features of five patients with Wolf–Hirschhorn syndrome (WHS). (A, B) Patient 1 from frontal and aside. (C, D) Patient 3 from frontal
and aside. (E, F) Patient 17 from frontal and aside. (G) Patient 15 from frontal. Parental/guardian informed consent was obtained for publication of this
figure
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Of eight patients with cytogenetically visible terminal 4p
deletions, six carried a terminal 4p deletion. Patient 17 carried an
interstitial deletion 1 Mb upstream of the WHSCR1 from 2.7 to
14.8 Mb (fig 2B), and patient 15 had an interstitial deletion
spanning between 1.8 and 10.1 Mb from the telomere. An
overview of the genotypes and phenotypes of the eight patients
is shown in table 1 and fig 3A. Hypertelorism, prominent
glabella, high forehead, short philtrum, typical down turned or
carp shaped mouth, and microcephaly were present in all
patients. The typical facial features, intrauterine growth
retardation (IUGR) and seizures were present in all patients
except for patient 17 (2.7 to 14.8 Mb interstitial deletion). In
two of these eight patients a CL/P was observed (patient 20 and
21), with terminal deletions of 19.5 Mb and 37 Mb, respec-
tively. Strabismus was present in five of the seven investigated
patients (not in patient 15 (1.8 to 10.1 Mb deletion) and 20 (0 to
19.5 Mb deletion)). Colobomata of the iris were observed in
three patients with deletions of at least 10.9 Mb from the
telomere. Two patients (patients 18 and 21 with, respectively, a
14.8 and 37 Mb terminal deletion) were found to have narrow
lacrimal ducts. A pre-auricular tag or pit was observed in
patients with deletions of 14.8 Mb and larger. All patients had
mental, postnatal growth, and psychomotor retardation. Of six
patients who underwent renal ultrasound, a renal defect was
only found in one patient (patient 14 with an 8.8 Mb deletion).
Fifteen of the 17 investigated patients had sacral dimples. All
three boys with a large deletion presented with genital defects.
Patients 16 and 18 had hypospadias (10.9 and 14.8 Mb terminal
deletions), and patient 17 had a normal migrated left testis and
a non-descended right testis (2.7 to 14.8 Mb interstitial
deletion). Hypotonia was present in six of eight individuals
except patient 15 and 20 (1.8–10.1 and 0–19.5 Mb deletion).

In 13 patients, a submicroscopic deletion was initially
detected by FISH. In 11 of them, the deletion was observed
by FISH using the locus specific probe detecting the WHSC1
deletion. However, in patient 1, the deletion was detected using
the Oncor WHS probe located distally from WHSCR1.
Subsequently, array-CGH was performed to determine the
deletion boundaries. This patient had a 1.4 Mb terminal
deletion not including the WHSCR1, confirmed by FISH with
the flanking clones RP11-1244E8 (1.35 to 1.42 Mb, deleted) and
RP11-1398P2 (1.46 to 1.61 Mb, normal) and the deleted
telomeric clone CTC-36P21. In patient 2, FISH using the
Cytocell WHS probe presented a weak signal in one chromo-
some 4 and a strong signal in the other chromosome 4 in all
metaphases, suggesting a partial deletion. Array-CGH pin-
pointed the breakpoint between RP11-21I14 (1.91 to 2.10 Mb,
deleted) and RP11-318G6 (2.00 to 2.19 Mb, normal) (Ensembl
release 42, December 2006). In two patients (patient 6 and 10),
small interstitial deletions were observed. An overview of the
genotype–phenotype correlation of these 13 patients is shown
in table 2 and fig 3B. Patients with deletions of the WHSCR1 all
present with the characteristic facial features, except for patient
3. Patient 1 with the 1.4 Mb terminal deletion not involving the
WHSCR1 had mild clinical stigmata and no typical WHS face.
Patient 10 with the 1.8 to 3.6 Mb interstitial deletion presented
with the typical WHS face, but lacked most other WHS
stigmata.

DISCUSSION
Genotype–phenotype correlation studies may enable the iden-
tification of the role of the different 4p genes in the aetiology of
WHS. However, several issues remain to be resolved. The
number of patients analysed is still limited and the resolution atTa
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which the location of the breakpoints has thus far been analysed
is low. Second, most genotype–phenotype correlation studies
are derived from patients with large cytogenetically visible
deletions spanning several Mb. Third, since several of the
clinical features of this syndrome have considerable variable
expressivity or penetrance, the phenotypic characterisation of
many more WHS patients will be required to pinpoint the genes
involved in these more rare aspects of the WHS phenotype.
Fourth, the role of position effects due to the relocation of the
telomeres is unknown. Finally, since WHS is a contiguous gene
syndrome, some of the features seen in WHS could result from
haploinsufficiency of more than one gene in the region.
Unravelling the contribution of each of the genes in the region
to these multigenic phenotypes provides a new challenge for
geneticists.

This report presents the largest genotype–phenotype correla-
tion analysis of WHS patients thus far. Using a chromosome 4
tiling path array, both interstitial and terminal 4p deletion
breakpoints were fine mapped. In addition to the classical
terminal deletions, sized between 1.9 and 30 Mb, we identified
a 1.4 Mb terminal deletion, the smallest deletion ever to be
reported in a patient with WHS phenotypic features. In
addition, we identified and mapped four interstitial deletions.
Both the patients lacking all classic WHS features and the
atypical deletions advanced the dissection of the molecular
features leading to the different WHS characteristics.

The main characteristic of WHS is the typical face, usually
referred to as a ‘‘Greek warrior helmet face’’. Previous studies
hypothesised hemizygosity of the WHSC1 as the most likely
cause of the facial phenotype.10 12 27 This notion was confirmed
by the present study. All, except in one patient with a WHSC1
deletion, did have the typical facial features. The patient with
the WHSC1 deletion but without the typical face is 23 years old.
Because of advancing age the facial features could have
coarsened over time (patient 3, fig 1C,D).7 28 One other patient
(patient 7) has partial facial phenotypic features but was not
considered to have the ‘‘Greek warrior helmet’’. The two

patients in this study without the facial WHS features do not
have a deletion of WHSC1: one patient had only a 1.4 Mb
terminal deletion not covering the WHSC1 (patient 1, fig 1A,B),
while another patient had a large interstitial deletion upstream
of the WHSC1 (patient 17, fig 1E,F).

The molecular features of WHSC1 suggest that the gene
might function as a chromatin remodelling enzyme because SET
domains have been shown to function as histone methylases.29

A deficiency in chromatin remodelling could deregulate the
expression of a variety of genes and hence lead to pleiotropic
effects. Recent studies indicated that haploinsufficiency of other
chromatin remodelling enzymes cause syndromatic phenotypes
such as the Chromodomain helicase DNA-binding protein 7
(CHD7) gene, causing the CHARGE (Coloboma, Heart anom-
aly, Choanal atresia, Retardation, Genital and Ear Anomalies)
syndrome,30 the Nipped-B-like (NIPBL) gene, causing the
Cornelia de Lange syndrome,31 and heterozygous mutations in
the V-ha-ras Harvey rat sarcoma viral oncogene homologue
(HRAS) gene, causing the Costello syndrome.32 Because of this
possibility, we sequenced the WHSC1 gene in five WHS patients
without 4p deletions (data not shown). Intriguingly, no
mutations were detected in this nor in previous studies.29

Either mutations elsewhere in the genome can cause pheno-
copies of the WHS, or WHSC1 is the wrong target gene and
another gene in the region is key for the phenotype.

Patient 17, a boy with a large interstitial deletion ranging
from 2.7 to 14.8 Mb, has normal growth parameters, he had no
seizures, and mental delay was mild with an IQ of 74. Sitting
and walking without support and speech were only mildly
delayed compared to the other patients with large deletions. In
contrast, all patients with large 4pter deletions, including our
six patients with large terminal deletions sized between 8.8 and
37 Mb, present with pre- and postnatal growth retardation, the
typical face, seizures, microcephaly, severe to profound mental
and psychomotor retardation and muscular hypotonia (the
latter except patient 20). Hence, haploinsufficiency of genes in
the 2.7 Mb 4pter region causes these WHS main features.

Figure 2 Results of the array CGH
analysis of two patients. The Y axis
represents the log2 of the intensity ratios
of the combined dye swap experiments of
patient versus control DNA. In the X axis
the spotted clones are ordered from the
4p telomere to the centromere. The
distance from the 4p telomere is indicated
in Mb. The arrows indicate the location of
the breakpoints and the distance from the
telomere is indicated. (A) DNA from a
patient with a small terminal deletion. (B)
DNA from a patient with a cytogenetically
visible interstitial deletion.
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Not only patient 17 (2.7–14.8 Mb deletion), but also patient 10
with an interstitial deletion (1.8–3.6 Mb deletion) has normal
growth parameters. A patient with a normal height and a 191 kb
deletion encompassing the WHSC1 and WHSC2 genes was des-
cribed.16 In contrast, the patient with a 1.4 Mb terminal deletion
did present with short stature and IUGR. Therefore, this study
locates a short stature candidate region in the terminal 1.4 Mb.

In our previous study, a healthy female with multiple
miscarriages carried a 0.3 Mb terminal deletion.12 Therefore, the
0.3 Mb terminal region is not a candidate region for the genotypic

map. Previously, we speculated that the WHS associated micro-
cephaly might be the result of a contiguous deletion involving at
least two genes, one located in a 1.8 Mb terminal region and one
between 2.2–2.5 Mb. This hypothesis resulted from patients
carrying a 1.9 and 2.2 terminal deletion without microcephaly.
This latter observation may also result from incomplete pene-
trance or genetic modifiers. The microcephaly in the patient with a
1.4 Mb terminal deletion as well as in the other three investigated
patients with deletion sizes up to 2.3 Mb is, however, more
consistent with a gene localised in this terminal 1.4 Mb region.

Figure 3 (A) Results of the detected
deletions using the full tiling array CGH of
chromosome 4 in eight Wolf–Hirschhorn
syndrome (WHS) patients with
microscopically visible deletions. The
bars show the sizes of the deletions.
(B) Results of the detected deletions
using the full tiling array CGH of
chromosome 4 in 13 WHS patients with
submicroscopic deletions. The bars show
the sizes of the deletions. The thick black
bars show the locations of the candidate
regions for each phenotypic feature. The
red bars show the locations of the critical
regions for hypospadias and CL/P defined
by Estabrooks et al.34
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Hemizygosity of LETM1, a ubiquitous Ca2+ binding protein
involved in Ca2+ homeostasis, located at 1.8 Mb from the 4p
telomere, has been suggested to cause seizures.11 33 However, the
patient with an interstitial deletion encompassing LETM1
(patient 6) did not present with seizures, while the patient
with the 1.4 Mb terminal deletion did present with seizures.
Therefore, another gene in this terminal region may cause the
epilepsy.

Besides these main characteristics features, WHS is charac-
terised by several minor features. Oligodontia occurred in six of
the nine investigated WHS patients in the present study.
Nieminen et al showed that a deletion of the msh homeobox 1
gene (MSX1), located at 4.9 Mb, might underlie this defect.34 In
contrast to this hypothesis, three patients in this study with
deletions in the terminal 2.7 Mb or smaller had oligodontia.
Since the carrier of a deletion from 1.1 to 2.5 Mb has
oligodontia, the candidate gene has to be sought in this interval.
Cleft lip and palate (CL/P) has been observed in nine of 29
patients described in the literature,9 10 and a candidate region for
CL/P was mapped between 150 kb (D4F26) and 2.3 Mb
(D4S43).35 We observed CL/P in a patient with a terminal
microdeletion of 3.7 Mb, and in two of eight patients with large
deletions. We defined the critical region from 0.3 Mb to 3.7 Mb,
but after interpretation of the results of Estabrooks et al,35 this
CL/P interval may be refined between 0.3 and 2.3 Mb.
Hypospadias was detected in all boys but patient 1 (1.4 Mb
deletion). Estabrooks et al mapped the critical region for
hypospadias between D4S127 (3.0 Mb) and D4S10 (4.0 Mb).35

Hence our results are concordant with these previous findings.
Estabrooks et al mapped the critical region for congenital heart
defect (CHD) between locus D4S43 and D4S241 proximal from
2.3 Mb.35 Zollino et al10 and Wieczorek et al9 found CHD in only
13 of 19 patients with large deletions. In the present study, four
of eight patients from both large and small deletions presented
with a CHD when having a deletion of 3.7 to 14.8 Mb. We
refined the region for heart defect proximal from 3.7 Mb.

In conclusion, WHS is a syndrome with a spectrum of
phenotypic features, from very subtle and mild to a wide range
of severe aberrations. The gene(s) causing the IUGR, postnatal
growth retardation and microcephaly are localised in the 0.3 to
1.4 Mb 4pter region. It is conceivable that a single gene might
cause all these features. Finally, this study refines the candidate
regions for CHD, CL/P, oligodontia and hypospadias. The
phenotypic characterisation of more WHS patients will be
required to delineate regions involved in these more rare aspects
of the WHS phenotype.
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