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ABSTRACT
Background Nerve growth factor b (NGFb) and tyrosine
kinase receptor type A (TRKA) are a well studied
neurotrophin/receptor duo involved in neuronal survival
and differentiation. The only previously reported hereditary
sensory neuropathy caused by an NGF mutation,
c.661C>T (HSAN5), and the pathology caused by biallelic
mutations in the TRKA gene (NTRK1) (HSAN4), share only
some clinical features. A consanguineous Arab family,
where five of the six children were completely unable to
perceive pain, were mentally retarded, did not sweat,
could not discriminate temperature, and had a chronic
immunodeficiency, is reported here. The condition is linked
to a new homozygous mutation in the NGF gene, c.
[680C>A]+[681_682delGG].
Methods Genetic linkage and standard sequencing
techniques were used to identify the causative gene.
Using wild-type or mutant over-expression constructs
transfected into PC12 and COS-7 cells, the cellular and
molecular consequences of the mutations were
investigated.
Results The mutant gene produced a precursor protein
V232fs that was unable to differentiate PC12 cells.
V232fs was not secreted from cells as mature NGFb.
Conclusions Both the clinical and cellular data suggest
that the c.[680C>A]+[681_682delGG] NGF mutation is
a functional null. The HSAN5 phenotype is extended to
encompass HSAN4-like characteristics. It is concluded
that the HSAN4 and HSAN5 phenotypes are parts of
a phenotypic spectrum caused by changes in the NGF/
TRKA signalling pathway.

INTRODUCTION
Nerve growth factor (NGF) was discovered in the
1950s.1 It is translated as a precursor pro-protein,
which undergoes successive N-terminal cleavage
events to produce a biologically active C-terminal
fragment called nerve growth factor b (NGFb),
which homodimerises and is secreted.2 The major
NGFb receptor is the neurotrophic tyrosine kinase
receptor type A (TRKA) encoded by the gene
NTRK1.3e5 The pan-neurotrophin receptor
p75NTR is a secondary receptor for NGFb.5 In mice,
the NGF/TRKA pathway is essential for the differ-
entiation and development of pain and temperature
sensing neurons, particularly the C-fibres of
peripheral nerves.6

The only reported family with a homozygous
NGFmutation7e9 presented with congenital lack of
pain appreciation, deficient temperature sensing and

a lack of C-fibres, but normal sweating, immunity
and cognitive abilities.7 This was described as
HSAN5. Although NGFb is the major TRKA ligand,
many biallelic mutations in NTRK110 11 have been
reported that cause more severe clinical findings.
Patients with NTRK1 mutations, described as
HSAN4, share the lack of pain appreciation and
lack of C-fibres, but additionally present with
anhidrosis andmild tomoderate mental retardation,
and recently an immune phenotype was also
described.10 12 Our findings explain this apparent
incongruence by extending the HSAN5 phenotype,
caused by NGF mutations, to encompass clinical
aspects previously linked only toNTRK1mutations.

METHODS
For details of all methods see supplemental data.

Clinical studies
The family was ascertained through a local clinical
genetics service after they sought a diagnosis.
Research ethics approval for this work was gained
from the appropriate authorities in the United Arab
Emirates and the UK. Nerve biopsy and formal
assessments of pain were not considered justifiable.

Genotyping and mutation detection
Autozygosity mapping was performed on three
affected family members. Data were analysed and
concordant homozygous regions further investi-
gated. Candidate genes were sequenced using
patient genomic DNA.

Cell culture and transfection
Rat pheochromocytoma PC12 cells and Simian
kidney COS-7 cells were kept in standard culture
conditions and transiently transfected with either
wild-type (WT) or mutant plasmid constructs.

Transfection plasmid construction
Full length NGF sequences were amplified from
genomic DNA from a patient and a control, and
cloned into pIRES2-AcGFP1. The missense muta-
tion (c.661C>T) was generated using wild-type
NGF-pIRES2-AcGFP1 as the template. FLAG-
tagged NGF constructs were based on those previ-
ously described.13 All clones were confirmed by
DNA sequencing.

PC12 differentiation assay
PC12 cells were grown on BD Matrigel coated glass
coverslips and transfected with constructs
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expressing wild-type/mutant NGF, or empty vector (null
control). As a positive control, 100 ng/ml murine submaxillary
gland NGF was added to untransfected cells. Cells were meth-
anol-fixed and mounted. Neurite length was compared between
transfected cell populations.14 Experiments were conducted in
duplicate and scored blind. Data are presented as mean 6SEM.
The level of statistical significance for comparison was set at
p<0.05.

ELISA and western blot analysis
PC12 and COS-7 cells were transfected with FLAG-tagged
constructs. After 24e48 h, the media and cell lysates were
collected. Total protein concentration was measured in dupli-
cate. Enzyme linked immunosorbent assay (ELISA) for NGF was
performed following the manufacturer ’s instructions. The level
of statistical significance was set at p<0.05. For western blotting
analysis, protein lysate and concentrated media extracts were
electrophoresed on gradient gels, transferred to polyvinylidene
fluoride (PVDF) membrane, blocked and incubated overnight
with the relevant primary antibodies. Secondary antibody was
added for 1 h. Signal was detected using ECL or ECL Plus
(Amersham Biosciences, Little Chalfont, UK).

RESULTS
Clinical studies
We ascertained a consanguineous Bedouin family with five
affected children (figure 1A). Both parents and another child had
a normal phenotype, without altered pain appreciation. The
affected children were both male and female and ranged in age
from 2e12 years. None appeared to experience pain. The first
medical problems were of biting lips, tongue and digits without
apparent discomfort (figure 1B, C). None could discriminate heat
and cold, detect that spicy food was ‘hot’, nor did they ever
sweat (anhidrosis). All had mild mental retardation evident by
the age of 4 years. All were otherwise well grown and in good
health, with a normal response to insect bites (which may serve
as a proxy for an intradermal histamine flare test). Over time, all
developed malar hypoplasia and sunken eyes, giving them
a prematurely aged appearance, due to a loss of teeth from
gingival diseasedin three children all teeth were absent at the
time of examination (figure 1C). All had suffered multiple,
painless, injuries of varying severity (figure 1D). All had poor
wound healing, usually requiring topical antibiotics. All had
normal immunoglobulin values and white cell counts. More
details are provided in the supplemental data.

Figure 1 Clinical phenotype and
identification of the mutation. (A)
Pedigree of the family showing
relationship between affected and
unaffected members. Clinical features of
family members with NGF c.[680C>A]
+[681_682delGG] mutation (CAdGG),
showing damage to digits caused by
biting (B), traumatic loss of tip of tongue
and loss of teeth due to gingivitis(C),
and a painless dislocation of the elbow
joint (D). (E) Chromatograms comparing
the wild-type carrier sequence (top)
with that from an affected child
(middle), and an alignment of the two
sequences showing the altered base and
two base pair deletion (bottom). (F)
Alignment of part of the mature protein
sequence showing the predicted altered
amino acid sequence for the protein
produced in the previously reported
family (R221W) and in our family
(V232fs) compared to wild-type NGF.
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Genotyping and mutation detection
Mutation of NTRK1 was first considered, as the phenotype
resembled HSAN4. However, the family was not linked to the
locus, and affected individuals had different intragenic hetero-
zygous single nucleotide polymorphism (SNP) haplotypes.
Genome linkage using the eldest three affected individuals
identified 11 concordant homozygous autosomal segments. Of
these, only two contained genes implicated in nociception: GTP
cyclohydrolase (GCH1) on chromosome 14q22, and NGF on
chromosome 1p13.15

Sequencing of NGF revealed a homozygous mutation, c.
[680C>A]+[681_682delGG] (hereafter referred to as CAdGG)
(figure 1E),which segregated faithfullywithin the family,was not
present in 320 ethnically matched control chromosomes or
reported in human genomic databases. Themutation occurs in the
single translated exon of NGF and leads to the bases ‘CGG’ being
changed to ‘A’. The resultant frame-shift is predicted to replace the
terminal 15 amino acids with a novel 43 amino acid terminal
sequence (V232fs) (figure 1F). Two evolutionarily invariant
cysteine residues at positions 229 and 231 are preserved,which are
involved in disulfide bond formation in wild-type NGF.16 The
CAdGGmutation creates additional cysteine residues in the novel
carboxy terminus with two, C241 and C243, potentially able to
compete in disulfide bond formation (figure 2B).

Analysis of a cohort of six consanguineous and 30 non-
consanguineous individuals with an HSAN4- or HSAN5-like

phenotype did not identify further NGF mutations, reaffirming
that it is a rare cause of hereditary neuropathy.
We hypothesised that V232fs would have a significantly

altered protein structure which could affect protein function.
The previously reported NGF mutation, c.661C>T (referred
hereafter as CT), was missense and led to the alteration of the
invariant amino acid arginine 221 to tryptophan (R221W).

PC12 differentiation studies
To investigate the pathogenicity of our mutation we created
constructs containing wild-type NGF, CT, or our CAdGG
mutation.
We first asked whether either mutant could activate the

TRKA receptor. For this, we took advantage of the characteris-
tics of PC12 cells, which normally divide in culture in an
undifferentiated state, but undergo mitotic arrest and neural
differentiation upon NGF exposure (figure 2A).17 By comparing
the percentage of differentiated cells induced by expression of
wild-type, R221W or V232fs NGF, compared with an empty
vector transfected control, we observed that unlike wild type
NGF, both mutant proteins failed to effectively induce PC12
differentiation over 3 days (figure 2B). The difference in differ-
entiation between both mutants and wild-type was significant
on all days (p<0.01), but not between the two mutants (figure 2B).
Therefore, both mutants were essentially unable to activate the
TRKA receptor.

Figure 2 V232fs and R221W fail to
induce PC12 differentiation and are not
secreted from the cell. (A) PC12 cells
transfected with empty vector (pIRES) or
vector containing wild-type (WT), CT
(R221W) or CAdGG (V232fs) mutantNGF
genes. (B) Cells were monitored over
a 72 h time course, and the percentage of
differentiated cells was assessed at 24 h
intervals. Images showing the relative
differentiation of cells expressing WT
(top left), R221W (bottom left), V232fs
(bottom right) proteins, and empty vector
control (top right) are shown.
Amplification 3100. (C) Graph showing
the percentage of differentiated cells for
each of the proteins under study over
3 days. Two-way analysis of variance
(ANOVA) analysis found significant
differences between WT and both
mutants at all the time points (p<0.01).
There was no consistent difference
between both mutants. Error bars
represent mean 6SEM. COS-7 cells
were transfected with empty vector or
a vector containing wild-type, or either of
the mutant (CT and CAdGG) NGF genes.
48 h after transfection, the media from
the cells expressing WT, R221W or
V232fs NGF was collected and
concentrated, and cells were lysed. Total
protein concentration was measured for
each sample, before being assayed for
NGF by ELISA. Results shown are the
average of two independent experiments.
Analysis with a one-way repeated
measures ANOVA found NGF levels in
wild-type were significantly higher than in either mutant for both the cellular extracts and media (p<0.01).

J Med Genet 2011;48:131e135. doi:10.1136/jmg.2010.081455 133

Short report

 on A
pril 27, 2024 by guest. P

rotected by copyright.
http://jm

g.bm
j.com

/
J M

ed G
enet: first published as 10.1136/jm

g.2010.081455 on 26 O
ctober 2010. D

ow
nloaded from

 

http://jmg.bmj.com/


Analysis of intracellular processing of pro-NGF and NGFb
secretion
We looked next for evidence of pro-NGF and NGFb secretion.
Media and cell lysates from PC12 and COS-7 cells transfected
with constructs containing FLAG-tagged wild-type, CT and
CAdGG NGF genes or the empty vector (pcDNA) were assayed
for the amount of NGF and NGFb present by ELISA. The NGF
signals from each sample were normalised as a function of the
wild-type NGFb signal. For both cell lines, a significant differ-
ence in secretion is seen between WT NGF and either mutant
protein (p<0.001), but not between the two mutant proteins
(figure 2C). However, although very sensitive, the ELISA cannot
distinguish between failed processing and defective secretion. As
an ELISA detects native proteins, it is also possible that the
mutant proteins were not efficiently recognised, particularly in
the case of V232fs, with its altered C-terminus. Therefore
denaturing SDS PAGE was used to examine exactly which
protein forms were present in all samples.

Western blotting analysis of cell lysates and media from
transfected COS-7 cells confirmed that wild-type NGF was
processed and secreted efficiently. In contrast, both mutants
showed higher levels of pro-NGF (confirmed by detecting the
FLAG epitope tag) in the cell lysates compared to wild-type
NGF. In addition, while a very small amount of mature R221W
NGF could be detected in the media, there was no detectable
release of mature V232fs NGF above background (figure 3).
Equal total protein concentrations were loaded, and even loading
confirmed using detection of b-Actin. Similar results were seen
in PC12 media extracts, although release of R221W was no
longer detectable in the media from PC12 cells, most probably
due to the lower transfection efficiency in this cell line (see
supplemental data).

These results suggest that both NGF mutations impair
processing of the pro-protein. Immunocytochemistry of trans-
fected COS-7 and PC12 cells to identify the subcellular local-
isation of R221W and V232fs found no clear difference in
localisation pattern between mutants and the wild-type protein
(see supplemental data).

DISCUSSION
We report a family where five affected children have a congenital
inability to feel pain, anhidrosis, defective temperature sensing,
mild mental retardation, and an immune deficiency. The parents
and a sixth child have no clinical phenotype and in particular
do not report a high pain threshold, nor have they suffered any
painless injuries or particular medical problems. This family
has a novel homozygous NGF mutation c.[680C>A]+[681_
682delGG].

The family that define the HSAN5 phenotype has a homo-
zygous NGF mutation c.[661C>T] resulting in a congenital
inability to feel pain and defective temperature sensing, but
conspicuously lacking the anhidrosis, mild mental retardation,
and slow wound healing seen in our family.

As TRKA is the major NGF receptor, the clinical differences
between HSAN4, caused by NTRK1 mutations, and HSAN5,
were puzzling. Based on our findings, we suggest that the c.
[661C>T] mutation is hypomorphic and retains some residual
activity, while most NTRK1 mutations and our NGF mutation
c.[680C>A]+[681_682delGG] are functionless.18 We suggest
HSAN4 and HSAN5 form a phenotypic spectrum caused by
deficiencies in the NGFB/TRKA pathway. Our data support this,
as does the report of a child with a homozygous NTRK1
mutation and HSAN5-like symptoms.19 Furthermore, HSAN4

and HSAN5 have identical peripheral nerve biopsy findings.
Clinically, the HSAN4 and HSAN5 phenotypes suggest that
C-fibres are essential to pain sensing.
We assessed the functional significance of the CAdGG NGF

mutation and compared it to the previously reported mutation,
CT.13 We found that our mutation failed to differentiate PC12
cells. Within experimental constraints we detected no consistent
difference between the two mutations. Our initial hypothesis
was that the CAdGG mutation would significantly alter the
protein tertiary structure and affect dimerisation.16 20 Instead
we found that the V232fs NGF protein was not processed, while
R221W NGF was processed very poorly (in agreement with the
previous study13). Analysis showed that a small amount of
R221W NGF was secreted into the media. In contrast, V232fs
NGF was undetectable by either western blot (denatured) or
ELISA (native peptide).

Figure 3 V232fs is not processed while R221W is processed poorly.
To determine whether the levels detected by ELISA represented
precursor NGF or mature NGFb, extracts were subjected to SDS PAGE,
transferred to PVDF and the membranes probed with anti-NGF antibody
to detect both precursor and mature forms (top), anti-FLAG specific for
precursor form only (middle), and b-actin as a loading control (bottom).
Both mutants seemed to fail to complete processing, although a faint
band can be detected for the CT mutant in the media extract.
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One aspect that seems to contradict a more severe effect for
CAdGG is the absence of phenotype in the parents, both carriers
of a mutated copy of the gene. In the Swedish family there is
evidence of variable neuropathic symptoms among the
carriers.21 We hypothesise that the R221W protein may have
a small dominant-negative effect in Swedish family heterozy-
gotes, as low levels of secreted R221W may interfere with wild-
type NGFb homodimerisation, resulting in a partially penetrant
phenotype. In our family, we expect the carriers to effectively
express only wild-type NGF, since V232fs is not secreted.
Therefore, the absence of phenotype in the parents of our
patients further supports, and indirectly validates, our conclu-
sion that CAdGG is a null mutation.

We conclude that HSAN4 and HSAN5 represent a clinical
spectrum with all cases sharing defective pain and temperature
sensing sensation, while anhidrosis, mental retardation, and
immune deficiency are present in more severe cases. Therefore
both genes should be investigated in families presenting any set
of symptoms associated with both neuropathies.
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