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AbsTrACT
During reproductive age, approximately one in seven 
couples are confronted with fertility problems. while 
the aetiology is diverse, including infections, metabolic 
diseases, hormonal imbalances and iatrogenic effects, it 
is becoming increasingly clear that genetic factors have 
a significant contribution. Due to the complex nature of 
infertility that often hints at a multifactorial cause, the 
search for potentially causal gene mutations in idiopathic 
infertile couples has remained difficult. idiopathic 
infertility patients with a suspicion of an underlying 
genetic cause can be expected to have mutations in 
genes that do not readily affect general health but are 
only essential in certain processes connected to fertility. 
in this review, we specifically focus on genes involved 
in meiosis and maternal-effect processes, which are of 
critical importance for reproduction and initial embryonic 
development. we give an overview of genes that have 
already been linked to infertility in human, as well as 
good candidates which have been described in other 
organisms. Finally, we propose a phenotypic range in 
which we expect an optimal diagnostic yield of a meiotic/
maternal-effect gene panel.

bACkGround
It is estimated that 10%–15% of couples are 
affected by infertility during reproductive age, 
with equal distribution of subfertility between men 
and women.1 A significant proportion of couples 
are unsuccessful despite having healthy repro-
ductive age, no detectable physical, endocrine or 
immune problems, apparently adequate quantity 
and quality of gametes and no apparent technical 
laboratory issues affecting the Artificial Reproduc-
tion Technologies (ART) procedures. For example, 
50%–80% of cases diagnosed with primary ovarian 
insufficiency (POI) remain idiopathic2 3; likewise, 
in 80% of men with non-obstructive azoospermia, 
the cause remains unknown.4 For such individuals, 
there are currently limited options for intervention 
to optimise fertility. When confronted with idio-
pathic infertility patients, an important first test 
that is often used by fertility centres is karyotyping. 
In a cohort study of 1663 azoospermic men, 14% 
of the tested individuals had chromosomal abnor-
malities, stressing the importance of karyotyping as 
a first-tier test.5 Patients with a normal karyotype 
and with exclusion of other causes may however be 
warranted to undergo genetic analysis.

In a clinical setting, one of the routes that can 
be followed to accomplish this is diagnostic gene 
panel sequencing. In humans to date, only a limited 

number of genetic changes have been found, 
affecting fertility in small numbers of cases.4 6 These 
findings hint at a multifactorial genetic origin and/
or environmental influences.7 In this scenario, the 
setup of genetic studies for infertility faces the risk 
of being underpowered because of an insufficient 
amount of samples and due to difficulties in clearly 
delineating the clinical pathophysiology. There-
fore, to potentially increase the diagnostic yield of 
gene panels, both the patient phenotype and the 
disease spectrum of the investigated genes should 
be matched as well as possible. For example, when 
investigating the genetic causes of subfertility of 
individuals with no other overt health problems, 
and without other physical, environmental, endo-
crinological or structural problems, one of the 
potential causes could be found in the process of 
meiosis, an absolute prerequisite for both male 
and female gamete formation. In addition to 
this, defects in maternal-effect processes could be 
suspected as well. 

We here suggest that during in-vitro fertilisation 
(IVF) treatment, errors in meiotic and maternal-ef-
fect genes can, in absence of an overt male factor, 
lead to a reduced fertilisation rate and an impaired 
early embryonic development. Meiotic defects have 
furthermore been described to be implicated in POI 
as well.8 9 However, the genetics of POI is broad, 
while in this review the emphasis is put on meiotic 
and maternal-effect genes with a potential clinical 
implication in infertility. Since genetic and func-
tional evidence from humans is limited, our study 
will be mainly based on reports from animal models. 
Most particularly, research in mice has explored 
many reproductive processes and identified critical 
factors. nimal studies are cited when relevant, with 
the understanding that species differences limit the 
power of extrapolation to humans.

Meiosis
Meiosis is an essential process of gamete forma-
tion, and its genetic disruptions are likely to have 
a considerable impact on fertility. Expression 
of meiosis genes is implicated in considerations 
including ovarian reserve, ovarian response, and 
oocyte maturation and activation. Meiosis gene 
mutations may therefore lead to a number of clin-
ical pathologies such as POI, insufficient oocyte 
maturation and low fertilisation rate.

Several distinct steps are necessary for meiotic 
completion, including the formation of double-
strand breaks (DSBs), chromosome synapsis, 
homologous recombination (HR), separation of 
homologous chromosomes during first meiotic 
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Figure 1 Overview of critical processes during the Mi stage. (A) After DNA replication, sister chromatids of both homologous chromosome pairs are held 
together by multiple units of the cohesin complex. (B) Alignment of the homologous chromosomes is facilitated by the synaptonemal complex. (C) The first 
step of homologous recombination occurs through the formation of double strand breaks (DBS). This process is Spo-11 dependent, and strand invasion 
is mediated by the Rad51-DMC1 complex, which is stabilised by Hop2-Mnd1. (D) After homologous recombination, the cohesin complex of the sister 
chromatids is cleaved by separase along the length of the sister chromatids. Cohesin at the centromeres is protected by shugosin, inhibiting the separase-
mediated cleaving. (e) Sister kinetochores connect to microtubules emanating from the same spindle poles, as such separating the newly recombined 
homologues.

division (MI) and separation of sister chromatids during meiosis 
II (MII). Since the spatiotemporal regulation of meiosis is also 
dependent on somatic cells in humans, namely the granulosa 
cells in women and Sertoli cells in men, genes involved in the 
crosstalk between the somatic and the germline compartment 
are also relevant to meiotic success.

Below, we describe the molecular subprocesses of meiosis and 
as such define a collection of genes warranting inclusion in a 
diagnostic gene panel for idiopathic infertility. This will comprise 
both genes that have already been described in an idiopathic 
fertility setting, as well as unreported genes that have a high 
potential to lead to meiotic errors when disturbed (figure 1).

The synaptonemal complex (sC): basis for chromosome 
pairing, synapsis and recombination
An essential premise for meiosis to take place is the correct align-
ment of homologous chromosomes (pairing) during its initial 
stages. A crucial mediator for this process is the SC, a multi-
protein structure that is assembled during meiotic prophase I 
and that is essential for synapsis, meiotic crossover10 and correct 
segregation of homologous chromosomes during anaphase in 
the first meiotic division.11 Given the pivotal role of the SC 
in meiosis, mutations in SC would be expected to give rise to 
fertility problems.

The SYCP3 protein is, together with SYCP2, one of the main 
components of the lateral elements of the SC and is essential 
for chromosome loading on the SC.12 Mutations in SYCP3 
have been shown in men with non-obstructive azoospermia.13 

Examination of testicular biopsies revealed that the most 
mature spermatogenic cells were early spermatocytes, indi-
cating a meiotic arrest, whereas SYCP3 mutations in women 
do not seem to lead to a meiotic arrest but result in recurrent 
pregnancy loss, probably due to the presence of aneuploidies.14 
This sexual dimorphism is speculated to arise from greater strin-
gency of the pachytene checkpoint in men than in women.10 To 
date, no mutations have been found in SYCP2, but mouse Sycp2 
mutants show a phenotype reminiscent of human SYCP3 muta-
tions, including the sexual dimorphism.15 Females lacking the 
SYCP2-like gene product SYC2PL undergo accelerated repro-
ductive ageing.16

Mutations in the SC component SYCE1 have been reported 
in cases of human infertility.17 SYCE1 is a component of the 
central element of the SC. Both male and female Syce1-mutant 
mice are infertile and are characterised by an arrest in prophase 
I.18 Reports of human SYCE1 variants identify azoospermia in 
affected men and women affected by premature ovarian insuf-
ficiency (POI).17 19 Additionally, in mice, the absence of Meiob 
and Spata22, two proteins associating with the SC and forming 
discrete foci on meiotic chromosomes causes failure of meiotic 
synapsis. Although Meiob ablation is associated with both male 
and female infertility in mice, in humans MEIOB mutation has 
been associated only with male azoospermia.20 21 Murine abla-
tion of Spata22 is also associated with male and female infertility 
through failure of synapsis.22
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double strand break formation
Precise alignment of the homologous chromosomes allows the 
initiation of the next meiotic process, recombination or crossing 
over (figure 1). Crossover occurs at one or multiple sites along 
the length of each chromosomal arms, resulting in the forma-
tion of chiasmata, and these chiasmata are essential to maintain 
chromosome cohesion during meiosis. Reduced recombination 
or incorrect placement of chiasmata is associated with increased 
incidence of aneuploidy.23–25 Paucity of chiasmata is most 
likely to lead to aneuploidy in the smallest chromosomes , for 
example, chromosome 21, there is evidence that the genome-
wide frequency of crossover may have some genetic basis. In 
families where one offspring has Trisomy 21, genome-wide 
analysis indicates that the frequency of crossovers is reduced in 
the individual affected by Trisomy 21 and in siblings26; and this 
crossover frequency may be partly accounted for by variation in 
the recombination factor PRDM9.27

Interestingly, the helicase-homologous protein HFM1, 
expressed in male and female germ tissues, appears to be required 
for formation or resolution of crossovers; in mice lacking this 
gene product, early steps in crossover are normal, but then most 
crossovers are eliminated and the majority of germ cells undergo 
apoptosis.28 Human HFM1 variants have been identified in 
women affected by POI.29 Furthermore, MCM8 and MCM9, 
two essential proteins required for HR drivenDNA repair, are 
more widely expressed in somatic tissues, and their ablation 
results in accumulation of DNA damage in response to replica-
tion stress, but nonetheless, the key phenotype of mice lacking 
these proteins is infertility, apparently due to errors in homolo-
gous recombination (HR).30 Variants in MCM8 have been iden-
tified in women affected by POI.31 32

Meiotic crossover requires the creation of DSBs in individual 
chromosomes and subsequent recombination between chro-
mosome homologues. Meiotic DSB generation requires the 
highly conserved SPO11 topoisomerase-like protein (figure 1). 
In human, heterozygous SPO11 mutations have been shown 
in men with azoospermia.33 In mouse models entirely lacking 
Spo11, spermatogenesis arrested before the pachytene stage, 
while oocytes arrested in prophase I.34 35SPO11−/− prelepto-
tene spermatocytes lacked homologous pairing, independent 
of the SPO11 DSB catalytic activity.36 However, in a hypomor-
phic mouse model expressing 60% normal levels of Spo11, 
spermatocyte development was normal,37 and Spo11+/− male 
mice showed no reduction in fertility compared with wild-type 
animals.38

Genetic defects in the regulatory machinery of SPO11 could 
also contribute to a fertility phenotype. Studies in yeast have 
delineated distinct mechanisms for SPO11 regulation in meiosis, 
either through intrinsic control of SPO11 dimerisation and 
nuclear retention, or through regulation of its interaction with 
DNA recombination hotspots. For instance, Rec102, Rec104 
and Ski8 are required for SPO11 dimerisation, DNA binding 
and nuclear retention in yeast.39–41 However, the SPO11 acces-
sory proteins REC11, Mer2 and Mei4 form a complex that is 
essential for the DNA binding and guiding of SPO11 to DSB 
cleavage sites.42Mei4−/− male mice are unable to initiate DSB 
formation in meiosis, resulting in synaptic defects and arrest of 
spermatogenesis.42 Mutations in homologous SPO11-associated 
genes have however not yet been described in humans.

In mice, an additional factor that has been shown to be neces-
sary for DSB formation/maintenance is Hormad1. Knockout 
mice meiocytes show a strong reduction in single-stranded DSB 
ends, as is evidenced by the diminished presence of Dmc1/Rad51 

foci.43 As both Hormad1 and its close paralogue Hormad2 
associate with the axis of unsynapsed chromosomes and have 
been hypothesised as inhibitors of interstrand DNA repair, 
thus favourising interhomologous driven repair, chromosome 
synapsis is disrupted as well in the Hormad1/2−/− models.44 45 
On synapsis, Hormad1/2 dissociate from the chromosomal 
axis, a process that is facilitated by Trip13. Trip13−/− mice 
oocytes show full chromosome synapsis but are unable to 
repair the Spo11-mediated DSBs, further supporting the role of 
Hormad1/2 in interhomologous repair.46 Failure of DSB repair 
leads to Chk2-dependent oocyte clearance. Interestingly, while 
testes of Hormad1−/− mice show progressive atrophy, ovarian 
development does not seem to be affected.47 However, embryos 
of Hormad1−/− females do not proceed further than the blas-
tocyst stage.

Homologous recombination (Hr)
Creation of meiotic DSB is followed by HR, which is driven 
by cellular DNA repair machinery that is shared between germ-
line and somatic cells (figure 1). DSB repair is initiated by the 
Mre11-Rad50-Nbs1 complex, which attracts both the ataxia 
telangiectasia mutated (ATM) and ataxia telangiectasia mutated 
and Rad3 related (ATR) kinases to the DSB sites and which in 
their turn phosphorylate histone H2AFX that acts as a beacon 
to attract novel repair associated proteins.48 In addition, ATM 
phosphorylates multiple DNA damage repair associated factors 
including CHK2, BRCA1/2 and P53, which subsequently orches-
trate crucial cell cycle checkpoints and the potential decision to 
drive the cell towards apoptosis if DSB repair is unsuccessful.49 
Repair by HR is mediated by DMC1 and Rad51 proteins, which 
form a nucleosome complex around the single strand overhangs 
of DSBs. Rad51 is an essential facilitator for DMC1-mediated 
interhomologous strand invasion.50 Interaction of the DMC1/
Rad51 complex with the strand invasion structure is further-
more enhanced by the Hop2–Mnd complex.51 Spermatocytes 
or oocytes with unrepaired DSBs are expected to be eliminated 
due to apoptosis or undergo induced senescence. Dmc1−/− 
mice ovaries are devoid of follicles, while depletion of Chk2 can 
rescue the phenotype by preventing Chk2-dependent Trp53 (p53 
in humans) activation and subsequent apoptosis.46 In humans, 
meiotic DSB repair is furthermore facilitated by the MSH4–
MSH5 heterodimer, which specifically associates with Holliday 
junctions, thereby stabilising the DSB intermediates.52 MSH4/5 
proteins are members of the MutS homologues which are mainly 
implicated in mismatch repair (MMR). While MSH2, 3 and 6 
are implicated in mitotic MMR, MSH4/5 are specifically active 
during meiosis. Interestingly, MSH5 is also expressed in gran-
ulosa cells.53 Mutations in both MSH4 and MSH5 have been 
detected in POI families.53 54

DNA repair-deficient mice often result in early lethality, 
as has been demonstrated for Rad51, PalB2, Brca1 and Brca2 
knockout  models.55 Human mutations in DSB repair genes 
including ATM, ATR, CHEK2, RAD51 and BRCA1/2 are associ-
ated with morbid phenotypes including cancer predispositions, 
and to date, no clear link has been demonstrated between hypo-
morphic variants in these genes and an infertility phenotype. It 
is not clear at present whether they warrant inclusion in an infer-
tility gene panel.

The specific case of BRCA1 and BRCA2 deserves further 
mention. Both proteins are involved in DSB repair and resolu-
tion of HR, and women carrying inactivating mutations are at 
elevated risk of cancer. A recent metastudy of carriers of BRCA1/2 
variants did not reveal significant subfertility compared with a 
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normal control population.56 However, BRCA2+/− mice show 
a significant reduction in germline cells.57 Spermatocytes do 
not progress further than early prophase I, while oocytes have 
been shown to progress through prophase, although with the 
presence of nuclear abnormalities. Likewise, BRCA1+/− mice 
are subfertile, characterised by an increase in oocyte apoptosis 
after hormonal stimulation and smaller litter sizes.58 Notwith-
standing these observations, the association of BRCA variation 
with cancer susceptibility mandates caution in including these 
genes in a fertility gene panel.

Meiosis: cohesin is key
On completion of HR, MI is initiated. To keep the sister chro-
matids together until separation in MII, spatiotemporal regu-
lation of the cohesin complex is necessary. While the cohesin 
complex is located along the whole length of the sister chroma-
tids during synapsis and HR, cohesin is depleted from the arms 
of sister chromatids after MI but from centromeres only in MII59 
(figure 1). Protection of centromeric cohesin prevents prema-
ture separation of the sister chromatids at MI, which could 
result from the mechanical pull of the kinetochores, . Failure 
of maintaining centromeric cohesin integrity could potentially 
lead toaneuploidy. In humans, the cohesin complex consists of 
Smc1, Smc3, Rec8 and a STAG1-3/Scc3 subunit.60 After HR, 
phosphorylation of cohesin subunits (in particular Rec8) along 
the length of the sister chromatids permits separase cleavage 
of Rec8, breakdown of the cohesin complex and separation of 
chromatid arms.59 At the centromeres, cohesin association with 
the shugoshin–PP2A phosphatase complex blocks phosphoryla-
tion and prevents premature separase-induced cleavage. When 
cells enter MII, the shugosin–PP2A complex is antagonised by 
the SET protein, allowing Rec8 cleavage by separase and separa-
tion of the sister chromatids.61

Meiotic segregation errors (leading to aneuploidy) increase 
in frequency with age, because of the incremental depletion of 
cohesin and Sgo2.62 Both male and female mice lacking Sgo2 are 
infertile, but in humans, SGO2 mutation has been reported only 
once to date.63 In mice, Sgo2 is furthermore stabilised by Meikin 
and consequentially, oocytes of Meikin−/− females display a 
disrupted anaphase II due to premature separation of the sister 
chromatids.64 Furthermore, human homozygous mutations in 
STAG3 are associated with POI.65 This has been mimicked in 
Stag3−/− mice where further investigation showed a meiotic 
arrest at prophase I, leading to oocyte depletion. Moreover, 
mice that have a knockout for Rec8, the phosphoprotein acting 
as a switch for separase degradation, are born in a submende-
lian frequency and are sterile.66 However, since other cohesin 
subunits are essential for both mitosis and meiosis, mutations 
in these result in congenital morbidities rather than reprodcu-
tive disorders; for example, SMC1A mutations cause Cornelia 
de Lange syndrome, an X-linked dominant disorder charac-
terised by growth retardation, developmental delay and often 
microcephaly.67 68 It remains possible that hypomorphic variants 
in cohesin complex components and regulators may produce 
reproductive effects, warranting their inclusion in a diagnostic 
gene panel for fertility.

Failure of completing Mi or Mii: meiotic arrest
The impossibility of an oocyte to complete MI or MII will, in 
case the oocyte pool is not fully cleared in the ovaries, likely 
result in fertilisation failure even when intracytoplasmic sperm 
injection (ICSI) is applied, and this can, in theory, be caused by 
mutations in any of the genes described above. However, during 

recent years, multiple novel genes have been described as being 
essential for meiotic progression. Although most work has been 
performed in mice and Xenopus, it can be expected that similar 
effects can be seen in humans in the homologous genes. Mutations 
in PATL2 (shown in humans, mice and Xenopus), Lfng (shown 
in mice), Prkar2b (shown in mice), Cks1, Cks2, Mos (shown in 
Xenopus and mice) and Smc1b all have been shown to lead to 
failure to proceed through meiosis.64 69–73 The processes these 
genes are involved in are diverse. For instance, oocytes of Cks2 
null mice fail to proceed after prophase I and while the same holds 
true for Cks1 null mice, the Cks2 null oocytes can be rescued by 
microinjection of Cks1 mRNA.69 74 Both Cks1 and Cks2 bind to 
Cdk1 and Cdk2 (cyclin dependent kinases 1 and 2, respectively) 
complexes thereby modulating the cell cycle.75 Interestingly, in 
Xenopus, it has been demonstrated that the CKS1 homologue 
strongly enhances phosphorylation of the downstream Cdk 
target Myt1, by which meiosis I entry is enabled.76 77 Further-
more, entry into MI in Xenopus requires Mos activation which, 
in turn, phosphorylates Myt1.78 Mos, which is an upstream acti-
vator of the mitogen-activating protein kinase (MAPK) pathway, 
is also implicated in maintaining the oocyte MII arrest (shown 
in mice and in Xenopus) by indirectly phosphorylating EMI2, an 
inhibitor of the anaphase promoting complex.79 A complemen-
tary mechanism by which MI is arrested prior to the oestrous 
cycle is through cyclic adenosine monophosphate (cAMP)-medi-
ated phosphorylation of Pka(cAMP-dependent protein kinase), 
which activates the kinase Wee2 (or Wee1b) which, in turn, will 
phosphorylate Cdk1, allowing the maintenance of prophase 
arrest.80 Intriguingly, when the oocyte has progressed to MII, 
Wee2 is also necessary for final MII exit by phosphorylation of 
its target Cdc2. In mice oocytes, inhibition of Wee2 results in 
failure of pronucleus formation and consequently to the impos-
sibility of fertilisation.81 Likewise, in humans, it has recently 
been shown that homozygous WEE2 mutations result in oocyte 
fertilisation failure. Injection of WEE2 mRNA could compensate 
for the mutations and effectively resulted in fertilisation.82

In contrast to cell cycle modulation, the Lfng protein is a 
regulator of Notch signalling by post-translationally modi-
fying the N-acetylglucosamine content of the Notch receptor, 
resulting in alteration of its ligand binding capacity.72 While 
Lfng−/− mice are not born at Mendelian ratios, the surviving 
female mice are subfertile and are characterised by significantly 
reduced in vitro fertilisation rate as the consequence of failure to 
proceed to meiotic metaphase II.72 Interestingy, chemical inhi-
bition of the Notch pathway in isolated mouse ovaries results 
in a marked downregulation of Lhx8, Figla, Sohlh2 and Nobox 
mRNA expression.83 In humans, mutations in LHX8, FIGLA, 
SOHLH2 and NOBOX have been demonstrated to lead to POI, 
thus providing a link between Notch signalling, meiotic arrest 
and POI.84 Furthermore, besides the Notch pathway, cAMP-de-
pendent protein kinase A (PKA) signalling is crucial as well in 
meiotic progression. For instance, during oocyte maturation, 
the PKA regulator, PRKAR2b, is highly upregulated during 
metaphase I and RNAi-mediated PRKAR2b depletion results in 
failure of MI progression.85

The PATL2 gene has recently been demonstrated as another 
essential factor for MI progression.86 Biallelic PATL2 muta-
tions in women resulting in complete loss of the protein display 
germinal vesicle arrest, while oocytes of compound hetero-
zygous patients with less severe mutations effectively make 
it through MI. However, fertilisation rates are poor, and the 
small number of embryos that are obtained fail in early devel-
opment.86 Relatively little is currently known about the function 
of PATL2. RNAseq experiments in PATL2−/− murine oocytes 
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have revealed a crucial role in the transcriptional regulation of 
oocyte maturation genes both in the germinal vesicle and during 
MII. One of the transcripts that is markedly downregulated in 
Patl2 mutated mouse oocytes is Cdc25a, which has also been 
shown to be crucial for meiotic progression.87 88 In line with 
this finding, translational regulation during oocyte maturation 
has been shown to be under control by the CPEB1 and DAZL 
proteins, which are responsible for ribosome loading onto 
oocyte-specific mRNAs.89 Additional transcriptional control 
in oocyte development has been observed for the FIGLA gene. 
Female Figla null mice display overexpression of testes-specific 
genes in their ovaries.90 Correspondingly, FIGLA mutations have 
been described in women with POI.91 92 In mice, transcriptional 
modulation of oocyte-specific genes, including Dazl, Figla and 
Nobox, is under control by the master regulator Taf4b, which 
associates with their respective proximal promoter sequence.93 
Consequently, mice deficient for Taf4b have oocytes displaying 
failure of prophase I progression going together with failure in 
synapsis. In conclusion, while the genes described in this section 
are necessary for meiotic progression, their molecular role 
is diverse, ranging from cell cycle control to transcriptionally 
initiating and fine-tuning oogenesis. This varied repertoire in 
functionality strongly suggests that still more genes are awaiting 
to be uncovered as essential for meiotic progression. A further 
possible implication could be that in certain patients, a multi-
genic origin can be   causal for their phenotype.

Paracrine regulation of female meiosis
In mammalian oocytes, meiosis is arrested at the diplotene stage 
until the time of ovulation. Only by an increase of preovula-
tory levels of luteinising hormone (LH) can meiotic resumption 
proceed. LH acts on the outer granulosa cells and initiates a 
signalling cascade that has to reach the oocyte, which is sepa-
rated from the outer surface of the follicle by more than 10 cell 
layers.94 The LH signal transmission and subsequent control of 
meiotic progression is based on cGMP diffusion through these 
different layers. High levels of cGMP in the oocyte results in 
a meiotic arrest. However, the genes NPR2 and NPPC, which 
are responsible for cGMP production, are only expressed in the 
granulosa cells, and thus, diffusion is necessary in order to obtain 
high cGMP levels in the oocytes. In the oocyte, cGMP inhibits 
phosphodiesterase 3A activity, suppressing cAMP hydrolysis, 
leading to a subsequent activation of PKA, which modulates the 
cell cycle.95 96 The dependence of the meiotic arrest on the pres-
ence of cGMP has been demonstrated in Npr2  null mice, which 
are infertile due to premature meiotic resumption.97 The impor-
tance of diffusion has, however, been evidenced in connexin 
37-deficient female mice, which are infertile due to an inhibition 
of meiotic completion.98

Connexin proteins assemble into gap junctions that are widely 
expressed in different cell types. In follicular tissue, connexin 
37 is responsible for diffusion at the oocyte-granulosa boundary, 
while connexin 43-based gap junctions form the connection 
between the granulosa cells. Interestingly, tissue-specific overex-
pression of connexin 43 in connexin 37-deficient mice can restore 
oocyte maturation resulting in fertile female mice.99 Currently, 
two modes of action have been described that contribute to 
the control of the meiotic arrest under the influence of LH. 
Murine follicles exposed to LH show a significant decrease in 
estrogen receptor (ER) levels. Binding of  ER to the NRP2 and 
NPPC promotor subsequently leads to their expression. There-
fore, reduced   ER levels results in lower cGMP levels, as such 
permitting meiotic progression.100 In a second study, it has been 

demonstrated that LH results in a significantly reduced perme-
ability of the connexin 43 gap junctions in a MAPK-dependent 
way.96 As such, cGMP produced in the granulosa cells diffuses 
less efficiently to the oocyte, allowing the meiotic process to 
proceed.

While signalling from the granulosa cells towards the oocyte 
is crucial for follicular development, paracrine effects in the 
opposite directions play a key role as well. Oocyte expression 
of the Transforming Growth Factor beta (TGFβ) family member 
proteins GDF9 and BMP15 is essential for granulosa cell devel-
opment.101 102 Binding of both proteins to the BMPRI and II 
receptor which are expressed on the granulosa and cumulus 
cells occurs from early follicilogenisis on and both proteins have 
been shown to interact with each other, forming the heterodimer 
cumulin, an activator of cumulus cells that is more potent than 
BMP15 or GDF9 alone.103 Gdf9-deficient mice are only able 
to form primary one-layer follicles.104 Interestingly, Gdf9  null 
oocytes grow faster and larger than controls despite incomplete 
follicle formation but nevertheless show abnormalities including 
the absence of cortical granules and aberrant clustering of organ-
elles around the germinal vesicle.102 105 Regulation of GDF9 
expression is under control of the transcription factor NOBOX, 
and mutations in both GDF9 and NOBOX have been shown to 
lead to POI in humans.106–110 Furthermore, NOBOX has been 
shown to interact with the FOXL2 transcription factor, in which 
mutations of the corresponding gene result in the blepharophi-
mosis-ptosis-epicantus inversus syndrome, which is associated 
with POI as well.111 Additionally, mutations in BMP15 have been 
shown to lead to POI, suggesting that a disturbed BMP15–GDF9 
interaction is contributive to the phenotype.107 Furthermore, 
regulation of BMP15 expression has recently been found to be 
influenced by basonuclein 1 (BNC1) expression.112BNC1 muta-
tions have been found in POI patients and resulted in reduced 
BMP15 expression in combination with meiotic defects in a 
mouse model.

MATernAl-eFFeCT FACTors
The term ‘maternal-effect factor’ refers to maternally encoded 
gene products, typically expressed in her oocytes, defects that 
do not affect her health but compromise the development of 
her offspring. The majority of maternal-effect genes have been 
studied using mouse models, but similar mutations are now 
being detected in humans, in rare, clinically driven genome-
wide analyses. However, their prevalence and impact are not 
known in the wider landscape of clinical reproductive medi-
cine.113 114

Some maternal-effect mutations directly affect the genome 
of the oocyte, and specifically the chromosome complement it 
delivers to the offspring. For example, a specific tubulin isoform, 
encoded by TUBB8, is required for the oocyte meiotic spindle, 
and maternal-effect mutations in TUBB8 can cause critical chro-
mosomal defects affecting both oocytes and, remarkably, very 
early development of fertilised embryos.115 116

The majority of maternal-effect mutations affect proteins or 
mRNA deposited in the oocyte that are required for postfertilisa-
tion development. On fertilisation, the sperm genome enters the 
oocyte, and this triggers the completion of oocyte meiosis. The 
zygote then restructures and activates its genome through a coor-
dinated sequence of functions, both epigenetically (changing the 
organisation of the zygote genome, and in particular the meth-
ylation of genomic DNA) and transcriptionally (potentiating 
expression of zygotic genes) (figure 2).
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Figure 2 Overview of the general methylation and transcriptional status of the oocyte, zygote and further developmental stages. From fertilisation on, 
the paternal DNA is actively demethylated. Demethylation of the maternal DNA occurs more passively, being not replaced during initial cell divisions. From 
the blastocyst stage on, expression of DNMT1 increases, which goes together with an increase of methylation of the embryonic DNA. Transcripts originating 
from the oocyte are very stable and constitute most of the mRNA during initial stages. However, from the 4–8 cell stage on, embryonic transcripts take 
over. SC, synaptonemal complex.

epigenetic
The DNA methylation of oocyte and sperm are highly divergent, 
reflecting their highly differentiated state and gene expression 
patterns,117 118 but these patterns are essentially harmonised by 
the time of blastulation (figure 2).119 120 In the one-cell zygote, 
the paternal genome is rapidly and actively demethylated119–122 
and appears to be predominantly passive, by reduction without 
replacement of DNA methylation over multiple cell cycles, 
possibly through restricted activity of the critical DNA meth-
yltransferase DNMT1.123 124 By the blastula stage, the DNA 
methylation of the two genomes is broadly equivalent and 
low, with two exceptions. First, constitutive heterochromatin 
and repetitive DNA are highly methylated and transcription-
ally repressed after a brief zygotic window of transcription.125 
Second, a small number of sequences elude both DNA demeth-
ylation and remethylation, and thus retain the methylation state 
of their gamete of origin, in a phenomenon known as genomic 
imprinting.126

Transcriptional
The maturing oocyte accumulates significant stocks of RNA and 
proteins, but the mature oocyte silences transcription127 and 
remains transcriptionally dormant until full zygotic genome acti-
vation (ZGA) at two-cell stage (2C) in mice, and the eight-cell 
stage in humans.128 mRNA is very stable in the growing oocyte 
(with an average half-life of 10–14 days). On meiotic matura-
tion, the average mRNA half-life returns to the normal level, of 
minutes or hours, and the mRNA content of the oocyte rapidly 
drops.129 The progressive destabilisation of maternal mRNA, by 
removal of 5′ caps and shortening of 3′ polyA tails, is believed 

to contribute to oocyte ‘ageing’, depriving zygotes of maternal 
mRNA necessary for early development and reducing their 
fitness.130–132

Maternal-effect genes and the zygote genome
During the remodelling of the embryonic genome, maternal-ef-
fect factors are essential, including epigenetic factors directly 
required for remodelling the genome and auxiliary factors that 
organise, stabilise and coordinate the use of maternally-provided 
RNA and protein until ZGA.

Epigenetic factors in the oocyte are also universally required 
in somatic cells, and thus highly penetrant mutations are incom-
patible with life; therefore, maternal-effect mutations are not 
readily found in human populations, and their effects have 
been explored in mouse models. For example, Trim28 forms a 
scaffold, linking DNA-binding zinc-finger proteins with DNA 
demethylases and chromatin modifiers. Ablation of oocyte 
Trim28 expression caused complete lethality: the majority of 
embryos failed around blastulation, and fetuses surviving beyond 
this time showed gross anatomical abnormalities. Interestingly, 
maternal null fetuses showed variably altered expression and 
DNA methylation of imprinted genes, suggesting that the lack of 
Trim28 in the first cell cycles exposed their differentially meth-
ylated regions to demethylation, which was not restored during 
later development.133 Remarkably, in both mice and humans, 
TRIM28 haploinsufficiency (in either maternal or paternal 
inheritance) predisposes to perturbed imprinted gene expres-
sion, particularly in adipose tissue, and resultant obesity.134 135 It 
remains to be determined whether more severe hypomorphism 
for TRIM28 is associated with reproductive compromise.

 on A
pril 16, 2024 by guest. P

rotected by copyright.
http://jm

g.bm
j.com

/
J M

ed G
enet: first published as 10.1136/jm

edgenet-2018-105513 on 6 F
ebruary 2019. D

ow
nloaded from

 

http://jmg.bmj.com/


277Gheldof A, et al. J Med Genet 2019;56:271–282. doi:10.1136/jmedgenet-2018-105513

Gametes

DNMT1, which methylates hemimethylated DNA, has both 
somatic and oocyte-specific isoforms. In mice, absence of 
maternally expressed Dnmt1 caused almost complete lethality 
of offspring, around midgestation, with a range of phenotypic 
abnormalities and DNA methylation defects, again including 
imprinted genes.123 124 136 Maternal haploinsufficiency for 
Dnmt1 has also been shown to compromise offspring outcomes 
and DNA methylation, though only in presence of another envi-
ronmental challenge, assisted reproductive technology,137 but to 
date, human mutations have not been reported.

Another critical epigenetic factor is the zinc-finger DNA 
binding protein ZFP57. In mouse models, Zfp57 binds to a 
hexamer motif in hemimethylated DNA, which recruits Trim28 
and thereby Dnmt1 to facilitate maintenance of DNA methyla-
tion.138 139 Combined maternal and zygotic knockout of Zfp57 
in mouse results in loss of imprinted DNA methylation and 
midgestation lethality.140 Human ZFP57 is not a maternal-ef-
fect gene: it is expressed in the embryo, and somatic mutation 
carriers show imprinting disturbance and a congenital imprinting 
disorder, whereas maternal mutation carriers do not.141 Mater-
nally provided Dppa3 (also known as Pgc7 or Stella) is essential 
for protection of methylation in the early murine embryo,142 but 
currently, its human homologue is not associated with any repro-
ductive phenotype.

Maternal-effect genes and developmental competence
Imprinting disturbance is a recurring theme in the second class of 
maternal-effect mutations: those whose role may not be directly 
genomic but possibly epigenomic or organisational. The arche-
type of these is mutation in NLRP7.

Human NLRP7 has no murine homologue. It was identified 
as a maternal-effect gene through mutations in mothers causing 
a severe adverse reproductive outcome, complete hydatidiform 
mole. However, heterozygous maternal mutations have been 
identfied in the mothers of adverse reproductive outcomes, or 
offspring with altered DNA methylation.143–145 Molar preg-
nancies do not produce liveborn offspring but disorganised 
tissue resembling extraembryonic structures. The majority are 
sporadic, monospermic pregnancies with no maternal contri-
bution, but women with homozygous NLRP7 inactivation, 
through mutation or gene deletion, show almost complete pene-
trance of molar pregnancy.146–148 NLRP7-associated moles have 
a normal biparental chromosome complement but complete 
loss of DNA methylation on maternally methylated imprints.149 
Molar pregnancies also result from maternal-effect mutations of 
KHDC3L,150 whose protein product associates with NLRP7 in 
the oocyte.151

NLRP7 is one of a gene family, several of which are tandemly 
located and the products of recent duplication in mammalian 
evolution.152 Several NLRPs are involved in humoral immu-
nity,153 while others are expressed almost exclusively and abun-
dantly in the oocyte. Nlrp5 (also known as Mater) was one of 
the first maternal-effect genes identified.154 Along with four 
other factors, Padi6, Khdc3 (also known as Filia), Moep and 
Tle6, Nlrp5 is among the most highly expressed proteins in the 
oocyte.155 156 These proteins form a very high molecular weight 
complex, identified in some reports as the subcortical maternal 
complex140 and others as cytoplasmic lattices (CPLs).157 Maternal 
ablation of murine Nlrp5 causes arrest at the 2C stage.154 In these 
maternal-null zygotes, CPLs are not formed, and the majority of 
oocytes do not attain the ‘surrounded-nucleolus’ confirmation 
associated with early viability.157 Khdc3l and Moep both have 
RNA-binding domains and RNA-binding activity in vitro.158 

Maternal-null Khdc3l mice have 50% fertility, with abnormal-
ities of spindle assembly and chromosome alignment that cause 
delayed mitosis and gross aneuploidy.159 Maternal null Moep−/− 
embryos show delayed and asymmetric cell division resulting in 
arrest at 2C–4C. Padi6 interacts with the mitotic spindle and actin 
cytoskeleton of the oocyte, as well as with ribosomes; maternal 
ablation leads to disappearance of CPL, altered localisation of 
ribosomal components, reduced protein translation, reduced 
PolII transcription and developmental arrest at 2 C-4C.160 Tle6 
is a phosphorylation target of PKA in oocyte maturation,161 but 
its function is not known. In humans, maternal-effect mutations 
have to date been identified in all these factors .162 Inactivating 
mutations of PADI6 and TLE6 were found in mothers under-
going IVF for infertility, whose embryos arrested at 2C163 164; 
KHCD3L mutations have been shown to cause familial hydatid-
iform mole. NLRP5 variants caused a range of developmental 
outcomes, including infertility, molar pregnancy, miscarriage and 
liveborn children affected by diverse imprinting disorders, and 
atypical imprinting disorders were also described in offspring of 
a mother with NLRP2 mutations.165 Other maternal-effect genes 
identified through murine studies but without currently iden-
tified human effects include Hsf1,166Npm2167 and Zfp36l2.168 
Detailed characterisation of maternal-effect mutations in appro-
priate model systems is needed to reveal their mechanisms. It is 
plausible that complete or near-complete loss of function would 
cause zygote arrest before ZGA and apparent infertility. It is 
furthermore very likely that environmental, medical, genetic and 
epigenetic problems all contribute to infertility and reproductive 
wastage, but their relative contributions are unclear.

PHenoTyPe seleCTion
Errors in MI could lead to an outcome of POI: the impossi-
bility to proceed to MI might trigger an apoptotic effect in the 
immature oocytes, whereas failure to stop the meiotic cycle after 
completion of MI has been shown to lead to a premature deple-
tion of the oocyte pool. Mutations in genes implicated in the 
formation of DSBs, chromosome synapsis, HR and separation 
of homologous chromosomes, which are the main processes 
occurring during MI, could therefore potentially be involved in 
patients with a POI phenotype. Alterations in genes regulating 
maternal-effect processes are expected to result in embryos that 
halt further development at a certain (early) stage. Moreover, 
and especially in an IVF setting, aberrations in maternal effects 
might lead to an increase in low-quality embryos as well.

Additionally, errors in the mechanisms spanning the time-
frame between ovulation and completion of MII postfertilisation 
could lead to a reduced fertilisation rate or failure of the embryo 
to further develop. It has to be noted however that diminished 
fertilisation can have other causes as well, ranging from paternal 
effects to defects in the acrosomal reaction, processes that are 
not included in this review.

In an ART/IVF clinical setting, defects in meiosis or mater-
nal-effect genes are expected to give rise to a specific phenotype. 
We therefore propose to initiate gene panel testing in patients 
with the following characteristics in the IVF clinic: (1) oocyte 
maturation rate lower than 20% in the absence of endocrino-
logical or technical issues in normal responders, (2) fertilisation 
rate lower than 10% in the absence of overt male factor and (3) 
embryo development rate lower than 10% in the absence of lab 
issues. However, prior to setting these criteria, severe parental 
phenotypes (including immune problems) and high levels of 
sperm damage should be excluded. Sperm parameters including 
concentration, motility and morphology have been associated 
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with the success in clinical pregnancies after ICSI.169 We suggest 
to take into account the parameters proposed by the WHO as 
initial cut-off values.170 Contrastingly, the presence of high sperm 
DNA damage has not been unambiguously shown as a signifi-
cant success parameter during ICSI.171 Furthermore, the couple 
should have been checked for karyotype errors. The presence 
of balanced translocations impacts heavily on meioisis leading 
to chromosomal imbalances in the gametes. Likewise, Robertso-
nian translocations , aneuploidies for the sex chromosomes and 
mosaic chromosomal abnormalities should be excluded as well. 
In summary, when these parameters are considered, we estimate 
that the contribution of meiotic or maternal-effect processes is 
likely.

ConCludinG reMArks
The last decade has shown a significant increase in the genetic 
and molecular characterisation of fertility-related processes and 
has given us a more clear insight in the cellular machinery that 
drives meiosis and maternal-effect processes. This research has 
predominantly been done in yeast and mice and has revealed 
a myriad of novel proteins, both species specific and evolu-
tionary conserved, adding further to the complex regulation of 
these processes. Given the molecular complexity of the meiotic 
process and its regulation, it is to be expected that multigenic 
alterations or polymorphisms could lead to gradation of an infer-
tility phenotype resulting from a deregulated meiotic process. It 
is however unlikely that the use of a targeted gene panel will 
be able to identify these subtle effects. In order to accomplish 
this, one would need a much more detailed description of the 
phenotype as well as a large enough amount of samples with 
similar phenotype. However, by using a meiotic gene-specific 
panel in combination with a highly specific phenotype that is 
readily identifiable by fertility centres, one can hope to further 
uncover the contribution of single genes and as such identify 
the underlying cause of infertility of a proportion of idiopathic 
patients. Furthermore, this would greatly improve our under-
standing of the meiotic/maternal-effect process and bring into 
view the impact certain genes have on the severity of the pheno-
type. More importantly in terms of clinical practice, this would 
aid patients in their treatment regime as well as patient families 
in terms of counselling.

Meiosis heavily depends on the formation and repair of double 
stranded breaks and mutations in genes that are implicated in this 
process and have been associated with cases of familial cancer. When 
mutations are found in any of these particular genes, the consulting 
physician or the fertility centre should have implemented well-con-
sidered scenarios into their counselling practice. This is, however, 
complicated by the fact that while for some repair genes, for instance 
BRCA1 and BRCA2, the connection with familial breast and ovarian 
cancer is clear, while for other repair genes, this is much less clear or 
even unknown at the moment. One approach to avoid this ethical 
issue is to simply omit the repair genes in the panel. Whether the 
benefits of this approach outweigh the disadvantages should be 
decided by the individual fertility centres in close collaboration with 
ethicists.

In this review, we have described candidate genes involved in two 
cellular processes, namely meiosis and maternal effects, which are 
eligible for playing a role in specific cases of idiopathic infertility. By 
using this set of genes in a diagnostic grade panel in combination 
with a specifically selected phenotype may improve the diagnosis 
for idiopathic infertility patients who fall into the selected cate-
gory. We realise that our gene set is not complete from a biological 
point of view. However, in terms of clinical applicability, the future 

implementation of a limited gene panel can bring a significant benefit 
to the follow-up, treatment and counselling of patients. An over-
view of the different genes described can be found in additional 
online supplementary table 1.
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