Genomic microarrays in mental retardation: from
copy number variation to gene, from research
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ABSTRACT

Structural chromosomal rearrangements can lead to

a wide variety of serious clinical manifestations, including
mental retardation (MR) and congenital malformations.
Over the last few years, rearrangements below the
detection level of conventional karyotyping have been
proved to contribute significantly to the cause of MR.
These so-called copy number variations are now
routinely being detected using various high-resolution
microarray platforms targeting the entire human
genome. In addition to their clinical diagnostic use, the
introduction of these high resolution platforms has
facilitated identification of novel microdeletion and
microduplication syndromes as well as disease genes.
The aims of this review are to address several aspects of
this revolutionising technology including its application in
the diagnostics of MR, the identification of novel
microdeletion and microduplication syndromes, and the
finding of causative genes for known syndromes. In
addition, a future prospect is provided for the detection
of disease causing mutations and structural variants by
next generation sequencing technologies.

INCREASING THE RESOLUTION TO STUDY THE
HUMAN GENOME

Structural chromosomal rearrangements can lead to
a wide variety of serious clinical manifestations,
including mental retardation (MR) and congenital
malformations.  Chromosomal  rearrangements
larger than 5—10 Mb in size can be detected by
conventional karyotyping. A considerable number
of clinical disorders, however, is caused by submi-
croscopic chromosomal rearrangements smaller
than 5—10 Mb in size. Depending on the clinical
diagnosis, specific (Q)PCR or fluorescent in situ
hybridisation (FISH) probe(s) can be used to
analyse a specific chromosomal region and confirm
a clinical diagnosis. However, an efficient and
robust technology was needed to routinely detect
rearrangements beyond the level of karyotyping in
an unbiased and genome wide fashion.

Genome profiling technologies, such as array
based comparative genomic hybridisation (CGH),
have dramatically changed the nature of human
genome analysis by combining the targeted high
resolution approach of the FISH technology and
the whole genome approach of the karyotyping
technology. Initially, genomic microarrays were
developed in academia and contained mostly
genomic fragments obtained from large insert
genomic  clones, mainly bacterial artificial
chromosomes (BACs).! 2 Different clone sets have
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been used, the most popular ones containing one
clone per 1 Mb or later on using a tiling resolution
clone set of approximately 30000 clones, covering
the genome with one clone per 100 kb.>"'% In the
last few years genomic microarray production has
been taken over by private enterprises and many
companies are now offering microarrays for
genome wide copy number profiling. With the
increasing resolution of the different array plat-
forms, detection of smaller and smaller genomic
copy number variations (CNVs) has become
possible (see table 1 for an overview of most
popular genomic microarray platforms).

In 2007, a novel method was developed to esti-
mate the ability of a microarray to reliably detect
genomic CNVs of different sizes and types all over
the genome.!' The method is based on the
following variables: (1) the genomic coverage of the
platform; (2) an estimate of the noise in the
microarray experiment (the standard deviation of
the test-over-reference ratio of the autosomal
targets); (3) an estimate of a single copy number
loss (ratio of the chromosome X unique regions of
sex mismatch experiments); and (4) the desired
statistical power. Four widely used high density
genomic microarray platforms for CNV detection
were tested for their performance, including 32k
BAC arrays, 100 and 250k single nucleotide poly-
morphism (SNP) microarrays and 385k oligonucle-
otide arrays. By doing so, it was found that the
high density oligonucleotide platforms are superior
to the BAC platform for the genome wide detection
of CNVs smaller than 1 Mb. The capacity to reli-
ably detect single CNVs below 100 kb, however, at
that time appeared to be limited for all platforms
tested. These analyses provided a first objective
insight into the true capacities and limitations of
different genomic microarrays to detect and define
CNVs.  Moreover, the study showed that,
depending on the microarray platform being used
and the pre-processing steps being performed before
CNV detection, 3—18 adjacently located targets
were required for reliable detection of single copy
number losses or gains. In addition, the analysis
revealed an unexpected platform dependent differ-
ence in sensitivity to detect a single copy number
loss and a single copy number gain. Single copy
number gains are more difficult to detect due to the
fact that the intensity ratios of single copy number
gains (in theory a test-over-reference ratio of 1.5, or
0.58 in log2 scale) are sometimes close to the
experimental noise level of a microarray platform.
In conclusion, this study showed that genomic
microarray platforms vary in their capacity to
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Table 1 Overview of the latest generation of commercially available microarrays for copy number variation (CNV) detection

Microarray vendor Catalogue whole genome array Technology Total number of copy number markers

Affymetrix Cytogenetics Whole Genome 2.7M array Single colour hybridisation, CNV and 2761979 oligonucleotides, of which
genotyping 400103 are single nucleotide

polymorphism (SNP) specific

Agilent Human High-Resolution Discovery 1*1M Two-colour hybridisation, CNV only 963 331 oligonucleotides

lllumina Human 1M-duo BeadChip Single-colour hybridisation, CNV and 1199187 oligonucleotides, majority SNP
genotyping specific

NimbleGen Human CGH 2.1M Two-colour hybridisation, CNV only 2100000 oligonucleotides

reliably detect CNVs of different sizes and different types. This
should be taken into account for estimating the practical
resolution of a platform to detect genomic CNVs. At the time of
this analysis (2007) many of the platforms still contained
considerable gaps in coverage, mostly due to the fact that
these regions contained no unique sequences and were often
excluded from the SNP microarray design because of Mendelian
inconsistencies.

Most of the above mentioned problems have now been solved
and companies have released microarrays containing more than
two million oligonucleotides targeting random sequences, SNPs,
or combinations thereof (table 1). These oligonucleotides have
been more evenly spaced across the genome, and optimised
protocols are now available for the quantitative detection of
CNVs. With this, CNV detection can now reliably be performed
at the kilobase level, resulting in the detection of hundreds of
CNVs per individual."”* "'/ These advances have made genomic
profiling technology an excellent tool for clinical genetic diag-
nostic applications as well as for fundamental genome research.

APPLICATION OF GENOMIC PROFILING IN THE DIAGNOSTICS
OF MR

Genomic microarrays have been extensively used in studying the
genetic causes of MR and this disorder can therefore be consid-
ered a model disease to study the clinical consequences of CNVs.
MR occurs in 2—3% of newborns in the general population, but,
in most cases, its cause has remained elusive.'® ' Establishing
the cause in a mentally retarded individual improves clinical
management and facilitates genetic counselling of the family.
Chromosome abnormalities are detectable by microscopic anal-
ysis of chromosomes isolated from peripheral blood lympho-
cytes in ~5% of patients with unexplained MR.?° 2! Molecular
cytogenetic techniques, such as FISH and multiplex ligation
dependent probe amplification (MLPA),?** have shown that
causative submicroscopic rearrangements of the subtelomeric
regions can be found in ~5% of patients with human malfor-
mations and MR.?*7%% These results for the subtelomeric regions
indicated early on that submicroscopic rearrangements such as
CNVs may be a more common cause of MR than microscopi-
cally visible rearrangements.

From its introduction using genome wide 1 Mb BAC arrays,
array CGH has proven useful in the diagnostics of MR with the
detection of causative microdeletions and/or duplications in
~10% of individuals with MR with or without additional
congenital anomalies.® ¥ Additional studies have provided insight
into the quality and reproducibility of the procedure, the need
for validation of the microarray data by independent technolo-
gies such as FISH or MLPA, as well as the way to translate these
data into clinical practise.” %’ The clinical usefulness of
molecular karyotyping was further substantiated in larger,
less selected, cohorts of individuals with MR using 1 Mb
resolution BAC arrays,* 6 tiling resolution BAC arrays,'® or 100k
SNP arrays.'> In the latter tiling resolution BAC array study,
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reproducible DNA copy number changes were detected in 97%
of patients. The majority of these alterations appeared to be
inherited from phenotypically normal parents, which reflected
normal CNVs in the human population. In 10% of patients rare
de novo alterations considered to be clinically relevant were
found: seven deletions and three duplications, varying in size
from 540 kb to 12 Mb and occurring scattered throughout the
genome.

Many similar studies have been published since (reviewed by
Koolen er al,? Veltman,?® and Knight and Regan®”. When taking
all studies together, two main conclusions can be drawn: (1) in
addition to submicroscopic subtelomeric chromosome imbal-
ances, rare, de novo, submicroscopic interstitial chromosome
imbalances or CNVs are responsible for a considerable propor-
tion of cases with MR varying between 5—20%, depending on
the clinical pre-selection of the individuals; and (2) these rare de
novo CNVs occur all over the genome. When comparing these
results to standard GTG banded karyotyping, the diagnostic
yield of array CGH in the general population of patients with
MR is at least twice as high.

Next to the apparent causative alterations, a large number of
inherited submicroscopic CNVs without evident clinical conse-
quences have been detected by array based methods, in patients
as well as in control populations.” ' **~4® CNV is now consid-
ered as a common form of structural genomic variation with
ultrahigh resolution microarrays and sequencing approaches
identifying >1000 CNVs in a single individual.*' Current clinical
interpretation therefore involves an analysis of the frequency of
CNVs in unaffected control cohorts as well as parental analysis
(see Lee et al*? as well as Koolen et al® for a review of literature
on the application of genomic microarray to MR and a practical
workflow for diagnostic applications). The identification of a (1)
relatively large, (2) rare, and (3) de novo CNV in such a patient is
a strong indicator of clinical significance, as this combination is
rare in the normal population.” * ** These indicators are
specifically helpful if the potential causative CNV can readily be
detected. An additional level of complexity in interpreting array
data is the presence of mosaicism, in which case the initial
identification of such potential causative CNV may be
hampered. In a comprehensive study of 638 neonates with
various birth defects, array analyses detected 12 (1.9%) mosaic
pathogenic variants.* The notion that MR CNVs may occur
postzygotically underscores the importance for automated
detection of mosaicisms.*®

IDENTIFICATION OF RECURRENT MICRODELETION AND
MICRODUPLICATION SYNDROMES

The possibility to perform genome wide CNV studies in patients
with MR has substantially increased the chance to identify
novel ‘microdeletion/microduplication syndromes’. In general,
the identification of novel syndromes is based on an accurate
phenotype—genotype correlation. From an historical perspec-
tive, this correlation relied on a detailed and accurate phenotypic
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description of the patients after which overlapping chromo-
somal rearrangements were uncovered. Nowadays, obtaining
a genotype has become much easier and, in addition, has never
been more accurate. As a result, the identification of novel
syndromes may start with the identification of overlapping
genotypes—that is, a ‘genotype first’ approach,” or ‘reverse
phenotypics’, in which patients are characterised by a similar
genomic aberration before a common clinical presentation is
defined. This approach has proven to be successful considering
the growing list of microdeletion/microduplication syndromes
(table 2).

The 17¢q21.31 microdeletion syndrome was the first micro-
deletion syndrome identified through this approach, simulta-
neously described by three groups.*® " Recurrent overlapping
de novo microdeletions in 17g21.31 were identified in patients
with MR using array CGH and MLPA. Clinical comparison of
these patients revealed pronounced phenotypic similar-
ities—that is MR, hypotonia and characteristic facial features,
including a long hypotonic face with upslanting palpebral
fissures, epicanthic folds, ptosis, large prominent ears, a tubular
or pear shaped nose with a bulbous nasal tip, long columella
with hypoplastic alae nasi and a broad chin.*® Other clinically
important features include epilepsy, heart defects and kidney/

urologic anomalies. The identification of more patients with the
same aberration showed that the 17q21.31 microdeletion
syndrome is a frequent cause of MR with an estimated preva-
lence of ~1 in 16000, and allowed the detailed clinical and
molecular delineation this syndrome.” Currently, it is still
unknown whether the 17g21.31 microdeletion syndrome can be
caused by a mutation in one single gene located within the
deletion interval (MAPT, CRHR1, IMP5 and STH). Efforts in
sequencing the coding regions of the MAPT gene in 122 patients
resembling the 17q21.31 deletion phenotype but without the
deletion have so far not revealed any mutations.*®~>!

Another example of a clinically well recognisable micro-
deletion syndrome is the 1524 microdeletion. Initially only four
individuals with submicroscopic overlapping deletions of the
1524 region were ascertained by screening a total of ~1200
individuals with idiopathic MR.' °? They shared several clinical
features, including MR, growth retardation, microcephaly,
digital abnormalities, genital abnormalities, hypospadias and
loose connective tissue. In addition, similar facial dysmorphisms
were noted, including high frontal hairline, broad medial
eyebrows, downslanting palpebral fissures and a long philtrum,
indicating that the 1524 deletions represent a clinical
syndrome.”® A further 15q24 microdeletion case showed similar

Table 2 Recurrent interstitial microdeletion/duplications associated with mental retardation

Name Size (Mb)* LCR MIM Clinical features

1921.1 microdeletion 1.1 + 612474 Mild-to-moderate MR, MC, cardiac abnormalities, cataracts, clear incomplete
penetrance

1921.1 microduplication 1.1 + 612475 Autism or autistic behaviours, mild to moderate MR, microcephaly, mild FD

1941942 microdeletion 1.2 — — MR, seizures, various dysmorphisms, cleft palate, diaphragmatic hernia

2p15q16.1 microdeletion 3.9 — — MR, MC, receding forehead, ptosis, telecanthus, short palpebral fissures,
downslanting palpebral fissures, broad/high nasal bridge, long/straight eyelashes,
smooth and long philtrum, smooth upper vermillion border, everted lower lip, high
narrow palate, hydronephrosis, optic nerve hypoplasia

3429 microdeletion 1.6 + 609425 MR, mild FD, including high nasal bridge and short philtrum

3929 microduplication 1.6 + 611936 Mild/moderate MR, MC, obesity

7q11.23 microduplication 15 + 609757 MR, speech and language delay, autism spectrum disorders, mild FD

9922.3 microdeletion 6.5 — — MR, hyperactivity, overgrowth, trigonocephaly, macrocephaly, FD

12914 microdeletion 3.4 - - Mild MR, failure to thrive, proportionate short stature and osteopoikilosis

14911.2 microdeletion 0.4 — — MR, widely spaced eyes, short nose with flat nasal bridge, long philtrum, Cupid’s
bow of the upper lip, full lower lip, auricular anomalies

15q13.3 microdeletion 1.5 + 612001 MR, epilepsy, hypotonia, short stature, microcephaly and cardiac defects

15924 microdeletion 1.7 + — MR, growth retardation, MC, digital abnormalities, genital abnormalities,
hypospadias, loose connective tissue, high frontal hairline, broad medial eyebrows,
downslanted palpebral fissures, long philtrum

16p11.2 microdeletion/duplication 0.6 + 611913 Association with MR, autism, schizophrenia

16p11.2p12.2 microdeletion 7.1 + — MR, flat facies, downslanting palpebral fissures, low-set and malformed ears, eye
anomalies, orofacial clefting, heart defects, frequent ear infections, short stature,
minor hand and foot anomalies, feeding difficulties, hypotonia

16p13.1 microduplication 1.6 + — Association with autism, significance uncertain

16p13.1 microdeletion 1.6 + — MR, MC, epilepsy, short stature, phenotypic variability

17p11.2 microduplication t 3.7 + 610883 MR, infantile hypotonia, failure to thrive, autistic features, sleep apnoea, and
structural cardiovascular anomalies

17921.31 microdeletion 0.5 + 610443 MR, hypotonia, long hypotonic face with ptosis, large and low set ears, tubular or
pear shaped nose with bulbous nasal tip, long columella with hypoplastic alae nasi,
broad chin

19913.11 microdeletion 0.7 — — MR, pre- and postnatal growth retardation, primary microcephaly, hypospadias,
ectodermal dysplasia including scalp aplasia, dysplastic nails and dry skin

22q11.2 microduplication 3.7 + 608363 Highly variable. MR, FD, for example widely spaced eyes and downslanting
palpebral fissures, velopharyngeal insufficiency, conotruncal heart disease

22q11.2 distal microdeletion 1.4-2.1 + 611867 MR, prematurity, prenatal/postnatal growth delay, mild skeletal abnormalities,
arched eyebrows, deep set eyes, smooth philtrum, thin upper lip, hypoplastic alae
nasi, small pointed chin

Xq28 microduplication 0.4—0.8 — — MR, severe hypotonia, progressive lower limb spasticity, absent or very limited

speech

FD, facial dysmorphisms; LCR, low copy repeat; MC, microcephaly; MR, mental retardation.

*Common region.
TPotocki—Lupski syndrome.

J Med Genet 2010;47:289—297. doi:10.1136/jmg.2009.072942

291

yBuAdoo Ag pa1osiold 1senb Ad 20z ‘9T Mdy uo jwoo g Buwly:dny wou) papeojumod 6002 J18qUIBAON 0F U0 276220°6002 BWI/9ETT 0T se paysliand 1sil 18U ps [


http://jmg.bmj.com/

phenotypic features, although microcephaly and growth defi-
ciency were absent.”® The deletions in the patients varied from
1.7—8.9 Mb in size. An additional four new deletion patients
were identified after screening a cohort of 9000 diagnostic
cases.” Interestingly, this latter study presented two patients
with a duplication of the same region. The phenotype of these
patients partially overlapped with the microdeletion phenotype.
The breakpoints were located in nearly identical segmental
duplications, which turned non-allelic homologous recombina-
tion into the most likely underlying molecular mechanism of
occurrence.”

Both the 17q21 and the 15q24 microdeletion syndromes are
examples where the initial identification of the (overlapping)
microdeletions led to a consistent and well recognisable clinical
entity. However, an increasing number of genomic loci has been
recently reported with variable inheritance and penetrance,
challenging clinical interpretation. Examples of this have been
reported for CNVs at 1g21.1,° %6 15q13.3,” *® and 16p13.11.%° ©°
In more detail, the recurrent 1.35 Mb deletion within 1q21.1 was
initially identified in 52 persons from screening over 21000
patients with unexplained MR, autism and/or congenital
anomalies.” °® The phenotype varied considerably and included
mild-to-moderate MR, microcephaly, cardiac abnormalities and
cataracts. Remarkably, several unaffected deletion carriers were
noted, underscoring the clinical variability. Enrichment of 1q21.1
deletions in persons with schizophrenia was also reported,
suggesting a role in psychiatric disorders as well.”! % The recip-
rocal microduplication involving 1q21.1 was associated with
autism or autistic behaviours, and common phenotypic features
of the duplication carriers included mild to moderate MR,
macrocephaly or relative microcephaly, and mild dysmorphic
features.” °® Also this microduplication was identified in appar-
ently normal individuals.

The clinical variability for the 15q13.3 microdeletion is of
a similar order to the 1g21.1 microdeletion. Initially, nine
affected individuals were identified in a large cohort of individ-
uals with MR of unknown aetiology. These patients included six
probands: two with de novo 15q13.3 deletions, two who
inherited the deletion from an affected parent, and two with an
unknown mode of inheritance.”” The patients had MR, epilepsy
and variable facial and digital dysmorphisms in common. The
recurrent 1.5 Mb deletion encompasses six genes, including
a candidate gene for epilepsy (CHRNA7). The clinical variability
of the 15q13 microdeletion was underscored by other studies
showing a clinical spectrum varying from non-pathogenic to
a severe outcome with a highly variable intra- and inter-familial
phenotype.”® In addition to cognitive impairment the pheno-
type might also include features of autism spectrum disorders
and a variety of neuropsychiatric disorders.®® In order to further
clinical interpretation, the continuous collection of (disease
causing) CNVs and their associated phenotypes in databases
such as ECARUCA (http://www.ecaruca.net) and DECIPHER
(https://decipher.sanger.ac.uk/application/) is of major impor-
tance, not only for the confirmation of pathogenicity, but also
for the proper counselling of patients and families.

RESOLVING THE GENETIC CAUSE OF KNOWN SYNDROMES

In addition to screening individuals with MR and defining new
microdeletion and microduplication syndromes, high resolution
genome profiling technologies may also facilitate the identifica-
tion of disease genes underlying known syndromes for which
the genetic cause has remained elusive. The specific phenotype
observed in patients with such syndromes allows for a stringent
pre-selection of patients whose DNA can subsequently be
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interrogated using such high resolution genome profiling tech-
niques. The first syndrome for which the genetic basis was
resolved by this approach was CHARGE syndrome.®*

CHARGE syndrome (MIM 214800) is an autosomal dominant
disorder with a prevalence of one in 10000.°° The acronym
CHARGE was first proposed in 1981 based on the cardinal
features identified when the association was clinically delin-
eated: Coloboma, Heart malformation, choanal Atresia, Retar-
dation of growth and/or development, Genital anomalies, and
Ear anomalies.®® Most cases of CHARGE syndrome are sporadic,
but several aspects of this condition, including the existence of
rare familial cases and a high concordance rate in monozygotic
twins, supported the involvement of a genetic factor. Rare de
novo cytogenetic abnormalities have been described, but no
specific locus had been identified before 2004. Also, systematic
genome scans by conventional metaphase CGH and micro-
satellite analyses did not reveal a common genetic cause, nor did
targeted sequencing of candidate genes such as PAX2 and PITX2.
With the availability of microarray based approaches, new
unbiased, genome wide screens were performed hypothesising
that microdeletions and/or microduplications might be the
underlying cause of CHARGE syndrome.®* Initial screening of
two patients with CHARGE syndrome on a 1 Mb BAC array
revealed a microdeletion of ~5Mb in one of the patients at
chromosome locus 8q12. Interestingly, an individual with
CHARGE syndrome with an apparently balanced chromosome 8
translocation had been reported previously, with the breakpoint
estimated within the 8q12 region.”” Array CGH analysis of this
translocation unravelled two interspersed microdeletions, over-
lapping with the microdeletion of the first patient. Subsequent
array analyses on a tiling resolution chromosome 8 BAC array of
17 additional CHARGE patients did not show any additional
microdeletions. As such, it was reasoned that mutations could
be present in these patients in one of the genes residing in the
shortest region of deletion overlap. Sequence analysis of
nine genes located within this region revealed causative muta-
tions in CHD7, a novel member of the chromodomain helicase
DNA binding gene family, in the majority of individuals
with CHARGE syndrome without deletions. Based on these
results, it was concluded that CHARGE syndrome is caused by
haploinsufficiency of the CHD7 gene, either by microdeletions
encompassing the CHD7 gene, or by mutations within this
gene.*

A second well illustrated example of gene discovery through
deletion and/or translocation mapping is the discovery of the
euchromatin histone methyl transferase 1 (EHMT1) gene causing 9q
subtelomeric deletion syndrome (MIM 610253). Submicroscopic
subtelomeric deletions of chromosome 9q (9qSTDS) are associ-
ated with a recognisable MR syndrome, with clinical features
including severe MR, hypotonia, brachy(micro)cephaly, epileptic
seizures, flat face with hypertelorism, synophrys, everted lower
lip, carp mouth with macroglossia, and heart defects.®*"% The
identification of the molecular cause of 9qSTDS started with the
initial FISH screening of subtelomeric rearrangements in 12
patients narrowing down the commonly deletion region to
~12 Mb interval.”® Subsequently, this region was further
reduced to an ~700 kb, still containing at least five genes and
several expressed sequence tags (ESTs).”* The first evidence that
9gSTDS was not a contiguous gene syndrome, but a single gene
disorder, came from the characterisation of the breakpoints of
a balanced translocation t(X;9)(p11.23;q34.3) in a patient
presenting with typical features of 9qSTDS. Molecular analyses
revealed that the chromosome 9 breakpoint disrupted the
EHMT1 gene in intron 9.”* Additional evidence for the causative
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role of EHMT1 was provided by deletion screening and sequence
analysis of the gene in 23 patients with a clinical presentation
reminiscent of 9gSTDS.”® Of these 23 patients, three showed
a deletion including the EHMT1 gene. However, more impor-
tantly, mutation analysis revealed de novo mutations in the
EHMT1 gene in two additional patients. With this discovery, it
was established that haploinsufficiency, of the EHMT1 gene,
either by deletion or mutation, leads to 9gSTDS.®’

Placed in a broader perspective, array based genomic profiling
may be best suited for resolving the genetic cause of known
syndromes that involve haploinsufficiency as the disease causing
mechanism (table 3).”* Whether the latter is the case may be
difficult to predict from the phenotype alone. Also, it is difficult
to predict how many patients need to be included in the study
to find a microdeletion. For instance, although both can be
considered single gene disorders, for CHARGE syndrome CHD7
gene mutations are prevailing over gene deletions whereas
deletions involving EHMT1 are more prevalent than mutations
in 99STDS. This also shows that it is challenging to predict
whether a syndrome is a single gene disorder, a contiguous gene
syndrome, a genomic disorder, or a combination thereof.

FUTURE PERSPECTIVE ON DISEASE GENE AND CNV
IDENTIFICATION IN CLINICAL GENETICS

The ultimate resolution to screen the human genome for disease
causing mutations and CNVs is at the base pair level. Major
advances in DNA sequencing technologies, collectively termed
next generation sequencing (NGS) technologies, are now
enabling the comprehensive analysis of whole genomes, tran-
scriptomes and interactomes.*® 728! Currently, NGS comprises
three main non-Sanger based sequencing methods: (1) pyrose-
quencing (Roche 454 technology); (2) sequencing with reversible
terminators (Solexa technology); and (3) sequencing by ligation
(SOLiD technology).75 The main differences between the
methods are read length, number of reads per run, and the costs
involved.”® Although the method of choice is based upon the
research/diagnostic question, all NGS methods are in principle
capable of detecting both single base mutations and structural
variation (figure 1).

With shotgun sequencing, the genome is shredded into
smaller fragments of DNA which can be massively sequenced in
parallel. Next, the sequenced fragments are assembled into
contigs based on the overlap in the sequence reads (de novo
assembly) or, alternatively, are aligned to a reference genome. In
the latter situation, single base pair changes compared to
a reference genome can be identified and as such may lead to

disease gene identification. Proof-of-principle studies, using the
autosomal dominant Freeman—Sheldon syndrome and X-linked
MR, have already shown that causative point mutations can be
identified using this approach.®* ® CNV can be identified by
differences in read depth—for example, the number of reads
mapping to a specific genomic locus also referred to as coverage
(figure 1C). For instance, for heterozygous deletions half the
number of reads should be expected compared to the
surrounding regions where two copies are present, whereas for
duplications 1.5 times the number of sequence reads should be
present. Additional evidence for copy number variants is
provided by so-called ‘split-reads’ in which one part of the
sequence read maps to one side of the deleted or duplicated
interval, whereas the remainder of the sequence read maps to
the other side of the interval.

Currently, the most specific NGS application to identify CNV
is paired-end mapping or mate-pair library sequencing, as this
application directly provides detailed positional information.”®
This application does not only identify unbalanced variants but
also balanced rearrangements, such as translocations and inver-
sions. For mate-pair runs, genomic DNA is randomly sheared
and size selected. After several processing steps, shotgun reads
are obtained by sequencing both ends of the size selected DNA
library. This positional information determined by the size
selection constrains the placement of paired reads within the
reference genome. Deviations from this expected size distribu-
tion may point to structural variation (figure 1D). For example,
fragments sequenced from 3 kb library are expected to map
~3kb apart when mapped back onto the reference genome,
whereas fragments mapping ~100kb apart may point to
a deletion in the DNA library tested. Additionally, mate-pairs
with different strand location, orientation or mapping positions
to different chromosomes may indicate inversions and trans-
locations. Interestingly, paired-end mapping strategies have
identified numerous structural variants currently not annotated
in the reference genome, suggesting that the reference genome is
still incomplete.””

CONCLUSIONS

In February 2001, the International Human Genome Sequencing
Consortium and Celera Genomics reported the first draft
sequence of the human genome.® In the years that followed,
this draft sequence has been instrumental for the systematic
analysis of the human genome, including the identification/
annotation of novel genes, the elucidation of regional differences
in genome composition, and the identification of SNPs. In

Table 3 Dosage sensitive genes identified through microdeletion and/or duplication mapping strategies

Syndrome Chromosome Size Gene(s) involved MIM Reference

Cystinuria with mitochondrial disease del(2)(p16) 179 kb SLC3A1, PPM1B, KIAA0436 606407 Parvari et al®
Adrenal hyperplasia with hypermobility del(6)(p21) 33 kb TNBX, CYP21A — Koppens et al®'
CHARGE syndrome del(8)(q12) 2300 kb CHD7 214800 Vissers et al%*
Oto-facial-cercival syndrome del(8)(q13.3) 316 kb EYA1 166780 Rickard et a/*

9q subtelomeric deletion syndrome del(9)(q34) Diverse EHMT1 610253 Kleefstra et al’?
Potocki-Shaffer syndrome del(11)(p11.2) 2100 kb EXT2, ALX4 601224 Potocki et a/®®
Infantile hyperinsulinism enteropathy and del(11)(p15p14) 122 kb USH1C, ABCC8, KCNJ11 606528 Bitner-Glindzicz et a/®*
deafness

12914 microdeletion syndrome del(12)(q14) 3440 kb LEMD3, HMGA2, GRIP1 — Menten et al*®

Peters Plus syndrome del(13)q12.3q13.1) 1500 kb B3GALTL 261540 Lesnik Oberstein et a/*®
Tuberous sclerosis polycystic kidney del(16)(p13) 87 kb TSC2, PKD1 173900 Brook-Carter et al®’
disease

Potocki—Lupski syndrome dup(17)(p11.2p11.2) 3700 kb RAI1 610883 Potcoki et a/®®

Alport leiomyomatosis del(X)(q22.3) 133 kb COL4AS5, COL4AG 301050 Zhou et al®®

MECP2 duplication syndrome dup(X)(q28) Variable MECP2 - Van Esch et a/'®
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Figure 1 Copy number detection
using array based platforms (A, B) is
based on the ratio for hybridisation
signal intensity between control and
patient DNA. In case of bacterial
artificial chromosome (BAC) microarray
(A), control and patient DNAs are
simultaneously hybridised to the same
array, allowing for a direct signal
intensity comparison. In case of single
nucleotide polymorphism (SNP) arrays
(B), this signal intensity comparison is

A Position (Mb)

Tiling resolution
BAC array

B Genome wide
SNP/oligo array
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regions containing two genomic copies.
In addition, ‘split-reads” will be present,
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indicating the breakpoints of the deletion interval. Alternatively, copy number variants can be detected by sequencing a mate-paired library providing
positional information from both ends of the interval. Deletions can be detected by mate-pairs spanning a larger genomic segment than anticipated
based on the library size. Yellow boxes/vertical lines represent BACs and SNPs, respectively, showing normal copies compared to the reference
genome, whereas the red box/vertical lines represent (part of) the BAC/SNPs that show a deletion compared to the reference genome. Grey boxes
represent individual sequence reads. Split-reads (C) are indicated by red boxes and connected by a dotted red lines. Appropriately mapped mate-pairs
(D) according to the size selected for are shown in grey boxes and connected by solid black lines indicating the distance between the pairs. Mate-pairs
that map at outside the size distribution are shown in red boxes, connected by red solid lines.

addition, new high-throughput approaches such as array CGH
were developed that facilitated and notably accelerated the
analysis of the human genome on a large scale, including the
detection of an unprecedented level of CNV within it. Together,
these approaches have contributed significantly to the rapid
development of molecular karyotyping, which allows disease
phenotypes to be directly linked to gene dosage alterations.

The concept of molecular karyotyping has significantly
changed the field of clinical cytogenetics and clinical diagnostics
in this decennium. The ability to obtain detailed quantitative
copy number information has already led to a significant
improvement in diagnostic yield in patients with MR and is
likely to do so for other common diseases such as autism,
epilepsy, and schizophrenia.®~® The genetic basis of several
clinical syndromes has been uncovered by this approach and
novel microdeletion and microduplication syndromes have been
identified from clinically heterogeneous cohorts. Without any
doubt, the implementation of next generation sequencing
technologies and medical resequencing strategies will continue
to change clinical genetic research and diagnostics.”® % &
Eventually, up to 25% of all cases of MR may be explained by
copy number dependent gene dosage variations, although not all
of these variants will be fully penetrant, challenging clinical
interpretation. In addition, high throughput (re-)sequencing
may reveal disease associated variants in another 10—30% of
cases. Clinical and biological interpretation of these variants will
require large international and multidisciplinary collaborative
efforts.
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