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ABSTRACT
Background Joubert syndrome ( JBTS) is a
predominantly autosomal recessive disorder characterised
by a distinctive midhindbrain malformation, oculomotor
apraxia, breathing abnormalities and developmental delay.
JBTS is genetically heterogeneous, involving genes
required for formation and function of non-motile cilia.
Here we investigate the genetic basis of JBTS in 12
French–Canadian (FC) individuals.
Methods and results Exome sequencing in all
subjects showed that six of them carried rare compound
heterozygous mutations in CC2D2A or C5ORF42, known
JBTS genes. In addition, three individuals (two families)
were compound heterozygous for the same rare
mutations in TMEM231(c.12T>A[p.Tyr4*];
c.625G>A[p.Asp209Asn]). All three subjects showed
a severe neurological phenotype and variable presence
of polydactyly, retinopathy and renal cysts. These
mutations were not detected among 385 FC controls.
TMEM231 has been previously shown to localise to the
ciliary transition zone, and to interact with several JBTS
gene products in a complex involved in the formation of
the diffusion barrier between the cilia and plasma
membrane. siRNA knockdown of TMEM231 was also
shown to affect barrier integrity, resulting in a reduction
of cilia formation and ciliary localisation of signalling
receptors.
Conclusions Our data suggest that mutations in
TMEM231 cause JBTS, reinforcing the relationship
between this condition and the disruption of the barrier
at the ciliary transition zone.

Joubert syndrome ( JBTS [MIM213300]) is a
predominantly autosomal recessive disorder charac-
terised by ocumolotor apraxia, abnormal breathing,
ataxia and variable developmental delay or intellec-
tual impairment (reviewed in Sattar et al).1 A car-
dinal sign of JBTS is the presence of a complex
midhindbrain malformation consisting of hypopla-
sia of the cerebellar vermis, abnormally deepened
interpeduncular fossa at the level of the upper
pons, and elongated and thickened superior cerebel-
lar peduncles. This malformation takes the appear-
ance of a molar tooth on MRI. Extraneurological
manifestations, including retinopathy, renal cysts
and polydactyly, are present in a subset of affected
individuals. JBTS is genetically heterogeneous, with
17 genes described to date,1–13 all of which appear

to play a role in the development and/or function
of non-motile cilia.
There is a high prevalence of JBTS in the French–

Canadian (FC) population of the Lower
Saint-Lawrence region of Quebec. We recently per-
formed exome sequencing in 15 individuals (11 fam-
ilies) with JBTS from that region and found that
mutations in C5ORF42 explain JBTS in nine indivi-
duals (seven families).12 In addition, we identified
pathogenic compound heterozygous mutations in
CC2D2A, a previously known JBTS gene, in two
affected individuals from two different families. The
genetic basis of JBTS remained unexplained in four
individuals (two families) from this initial study.
Here, we follow-up on our previous investigation by
performing exome sequencing in eight additional
individuals with JBTS (six unrelated families) origin-
ating from other regions of Quebec.
The six probands had a molar tooth sign on

imaging, and variable expression of the classical
JBTS features. The two additional individuals are
the uncle (II-4) and aunt (II-6) of subject IV-1 in
family 385/447. These individuals were considered
to have a variable expression of JBTS as they both
had oculomotor apraxia and, additionally, II-4 had
gait ataxia and a history of developmental delay.
Brain MRI was normal in II-6 (see online supple-
mentary figure S1, A-B) but was not done in II-4.
Informed consent was obtained from each individ-
ual or legal guardian. This study was approved by
our institutional ethics committee. Genomic DNA
from each sample was captured with the Agilent
SureSelect 50 Mb exome capture oligonucleotide
library, and the captured DNAwas sequenced with
paired-end 100 bp reads on Illumina HiSeq 2000
resulting in an average of 12.7 gigabases (Gb) of
raw sequence for each sample. Data were analysed
as previously described.14 After removing putative
PCR-generated duplicate reads using Picard
(V.1.48), we aligned reads to human genome
assembly hg19 using a Burroughs–Wheeler algo-
rithm (BWAV.0.5.9). Median read depth of bases in
consensus coding sequence (CCDS) exons was 99
(determined with Broad Institute Genome
Analysis Toolkit V.1.0.4418).15 On average, 87%
(±2.0%) of bases in CCDS exons were covered by
at least 20 reads. We called sequence variants using
Samtools (V.0.1.17) mpileup and varFilter, and
required at least three variant reads as well as
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≥20% variant reads for each called position, with Phred-like
quality scores of at least 20 for single nucleotide variants
(SNVs) and at least 50 for small insertions or deletions (indels).
We used Annovar and custom scripts to annotate variants
according to the type of mutation, occurrence in the Single
Nucleotide Polymorphism database (dbSNP), Sorting Intolerant
from Tolerant (SIFT) score, 1000 Genomes allele frequency, and
National Heart, Lung and Blood Institute (NHLBI) exomes
allele frequency.16 To identify potentially pathogenic variants
we filtered out (1) synonymous variants or intronic variants
other than those affecting the consensus splice sites; (2) var-
iants seen in more than two of 416 exomes from patients with
rare, monogenic diseases unrelated to JBTS that were sequenced
at the McGill University and Genome Quebec Innovation
Centre and (3) variants with a frequency greater than 0.5% in
either the 1000 genomes or NHLBI exome datasets.

We first examined the eight exome datasets to look for rare
variants in the 17 known JBTS genes (INPP5E[MIM613037],
TMEM216[MIM613277], AHI1[MIM608894], NPHP1
[MIM607100], CEP290[MIM610142], TMEM67[MIM609884],
RPGRIP1L[MIM610937], ARL13B[MIM608922], CC2D2A
[MIM612013], CXORF5[MIM300170], KIF7[MIM611254],
TCTN1 [MIM609863], TCTN2[MIM613885], TMEM237
[MIM614424], CEP41[MIM610523], TMEM138[MIM614459],
C5ORF42[MIM614571],1–13 as well as in the JBTS candidate
gene TTC21B(MIM612014).17 Five individuals from three fam-
ilies (II-1 from family 379, II-4, II-6 and IV-1 from family 385/
447, and II-1 from family 492 online supplementary figure S2)
were each found to carry two rare heterozygous variants in
CC2D2A(NM_001080522.2). One in-frame amino acid deletion
(c.3450_3452del[p.Val1151del]) and four different missense var-
iants (c.3376G>A[p.Glu1126Lys], c.4559A>G[p.Asn1520Ser],
c.4667A>T[p.Asp1556Val], c.4702T>C[p.Tyr1568His]) were
identified, two of which, c.3376G>A(p.Glu1126Lys) and
c.4667A>T(p.Asp1556Val), were identified previously in FC
individuals with JBTS.12 The novel mutations c.4559A>G(p.
Asn1520Ser) and c.4702T>C(p.Tyr1568His) are predicted to
be damaging (by SIFT, Polyphen-2 and Mutation Taster) and
neither variant has been reported in the Exome Variant Server
(EVS; NHLBI GO Exome Sequencing Project), dbSNP135 or
1000 Genome datasets. These five CC2D2A mutations cluster
in either the C2 domain (amino acids 1062–1174) or the
C-terminal part of the protein, as do most missenses that cause
JBTS.18 Segregation analysis revealed that all the affected indivi-
duals, but none of their unaffected relatives, were compound
heterozygous for the mutations (see online supplementary
figure S1). We conclude that these mutations are pathogenic and
responsible for JBTS in these five individuals.

We also identified a frameshift mutation (c.8257_8258insA
[p.Lys2753fs]) and a splice-site mutation (c.7400+1G>A) in
C5ORF42(NM_023073.3) in individual II-2 from family 551.
Sanger sequencing showed that the proband is compound het-
erozygous for these mutations. The splice site (c.7400+1G>A)
mutation has been previously identified in patients with JBTS
and shown to result in skipping of exon 35 and the creation of
a premature stop codon while c.8257_8258insA(p.Lys2753fs),
which is novel, is predicted to truncate C5ORF42 in the middle
of its sequence, close to where other truncating mutations have
been previously identified in JBTS patients.12 Both C5ORF42
mutations are thus considered pathogenic in this individual.
Table 1 summarises the genotypes and phenotypes of these
patients with mutations in CC2D2A and C5ORF42, as well
as those of FC patients previously described with mutations
in these genes. Individuals in our cohort with mutations

in CC2D2A do not have any extraneural manifestations, and
appear to have a milder phenotype, with all affected individuals
walking independently before the age of 4 years, and intelli-
gence ranging from normal to mild intellectual impairment.
Individuals with mutations in C5ORF42 have a more variable
phenotype. They have borderline to moderate cognitive impair-
ment and variable age at walking, ranging between 30 months
and 8 years. Some patients also showed limb abnormalities,
including one individual with combined pre- and postaxial
polydactyly, an unusual finding in JBTS, which is typically
associated with postaxial polydactyly.

We then combined the exome data of the two remaining
individuals with unexplained JBTS and the exome data of four
individuals with unexplained JBTS from our previous study,12

making a total of six individuals from four different families.
We analysed the data by looking for protein-coding genes that
contained homozygous or multiple heterozygous variants in
each affected individual. For multiplex families, we only consid-
ered genes with the same variants in the affected siblings (see
online supplementary tables S1 and S2). Only one gene,
TMEM231, harboured multiple rare mutations in more than
one family. Three JBTS individuals from 2 families (II-1 and
II-2 from family 387, and II-1 from family 483) harboured the
same two variants in TMEM231(NM_001077418.1): c.12T>A
(p.Tyr4*) and c.625G>A(p.Asp209Asn). Sanger sequencing
showed that all affected individuals were compound heterozy-
gous for these variants (figure 1A). The c.12T>A(p.Tyr4*)
mutation targets exon 1 of the canonical isoform of TMEM231
(NM_001077418.1; ENST00000258173), as well as the two
other predicted protein-coding isoforms reported in the
Ensemble Genome Browser. In ENST00000565067, it leads to
the same nonsense change (p.Tyr4*), while in the longer
isoform ENST00000398114, it abolishes the translation initi-
ation methionine (c.2T>A[p.Met1?]), which would likely
prevent translation of this isoform due to the absence of any
other in-frame methionine in exons 1 and 2. The c.625G>A(p.
Asp209Asn) causes the same amino acid change in the different
TMEM231 predicted isoforms (figure 1C). It affects a highly
conserved amino acid (figure 1D), and is predicted to be dam-
aging by Polyphen-2 and Mutation Taster but not by SIFT.
Both p.Tyr4* and p.Asp209N are extremely rare. Among the
416 in-house exomes, the c.12T>A(p.Tyr4*) was not found,
and the c.625G>A(p.Asp209Asn) variant was seen in the het-
erozygous state in one FC individual. No additional TMEM231
coding/splicing variants were present in this individual’s
exome. To determine the carrier rate of c.625G>A and
c.12T>A, we genotyped 385 healthy FC controls by Sanger
sequencing, but did not find any carriers of either of these
mutations, indicating that they are very rare. Only p.
Asp209Asn is reported in the heterozygous state in the 1000
genomes and EVS, but at a very low frequency (0.01%), while
p.Tyr4* is not reported in any of these public single nucleotide
polymorphism (SNP) databases. Furthermore, no truncating
mutations in TMEM231 were seen in 416 control exomes of
patients with other rare diseases, and only one other truncating
variant (stopgain SNV) is reported in EVS, at a frequency of
0.04%. For the three individuals with compound heterozygous
TMEM231 mutations, we examined all SNV genotypes in
regions surrounding the two mutations. This revealed a region
of shared genotypes (two shared haplotypes) extending over at
least 1.7 Mb, suggesting the existence of founder effects (see
online supplementary table S3).

The three individuals with mutations in TMEM231 are
among the most severely affected in our French–Canadian JBTS
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Table 1 Genotypes and phenotypes of French Canadian individuals with JBTS

Genotypes

Srour et al12 This study
406/301 394 474 480 489 479 468 473 484 385/447 379 492 551 387 483
IV-1 IV-2 IV-3 II-1 II-2 II-1 II-1 II-1 II-1 II-1 II-2 II-1 II-4 II-6 IV-1 II-1 II-1 II-2 II-1 II-2 II-1

C5ORF42
c.4006C>T(p.Arg1336Trp) + − − + + + + − + + − − − − − − − − − − −
c.7400+1G>A + + + + + + − − − − − − − − − − + − − −
c.6407del(p.Pro2136Hisfs*31) − − − − − + − − − − − − − − − − − − − − −
c.7477C>T(p.Arg2493*) − − − − − − − + − − − − − − − − − − − − −
c.4804C>T(p.Arg1602*) − − − − − − − − + − − − − − − − − − − − −
c.7957+288G>A; c.4690G>A(p.Ala1564Thr) − + + − − − − + − + − − − − − − − − − − −
c.8257_8258insA(p.K2753fs) − − − − − − − − − − − − − − − − − + − − −

CC2D2A
c.4667A>T(p.Asp1556Val) − − − − − − − − − − + + − − + − + − − − −
c.3376G>A(p.Glu1126Lys) − − − − − − − − − − + + + + + + − − − − -−
c.4559A>G(p.Asn1520Ser) − − − − − − − − − − − − + + − − − − − − −
c.4702T>C(p.Tyr1568His) − − − − − − − − − − − − − − − + − − − − −
c.3450_3452del(p.Val1151del) − − − − − − − − − − − − − − - - + - - - -

TMEM231
c.12T>A(p.Tyr4*) − − − − − − − − − − − − − − − − − − + + +
c.625G>A(p.Asp209Asn) − − − − − − − − − − − − − − − − − − + + +

Age (years) 8 1.5 3 52 45 4 10 7 13 31 3 12 62 53 5 10 5 16 14 9 4
Developmental delay + + + + + + + + + + Mild Mild + − + + + + + + +
Age at walking Walks with aid Not amb NA NA walks 3 Not amb 8 3.5 7 2.5 1.5 1.5 4 1 2 4 2.5 7 Not amb Not amb Not amb
Oculomotor apraxia − + + + + + + + + + + + + + + + + − + + +
Breathing abnormality + + + + + + + + − − − − − − − + − + + + +
Limb abnormality† − + − − − + − − − − − − − − − − − − − + +
Brain MRI MTS MTS MTS ND MTS MTS MTS MTS MTS MTS MTS MTS NA N MTS MTS MTS MTS MTS MTS MTS
Retinal involvement‡ −(f ) −(e) −(e) −(h) −(h) −(f ) −(e) −(e) −(f ) −(h) −(e) −(e) −(f ) −(e) −(e) −(e) −(e) −(f ) −(f ) +(f) +(e)
Renal involvement§ −(us) −(us) −(us) −(h) −(h) −(us) − (us) −(us) −(us) −(h) −(us) −(h) −(h) −(h) −(us) −(us) −(h) −(us) −(us) +(us) +(us)

The nucleotide and amino acid positions for CC2D2A are based on reference sequence #NM_001080522.2, for TMEM231on reference sequence #NM_001077418.1, and for C5ORF42 on reference sequence #NM_023073.3 except for c.G4690A/p.A1564T
that is based on ENSEMBLE transcript ID #ENST00000509849.
†IV-2 from family 406/301 has a 3–4 syndactyly in the left hand, II-1 from family 474 has pre- and postaxial polydactyly of the four limbs, and II-2 from family 387 and II-1 from family 483 have postaxial polydactyly and 4-5-6 syndactyly of the right foot.
‡Retinal involvement was determined by electroretinogram (erg), fundoscopy (f) or history (h).
§Renal involvement was determined by renal ultrasound (us) or history (h). Individuals II-2 from family 387 and II-1 from family 483 have renal cysts with normal renal function.
MTS, Molar tooth sign; N, normal; NA, not available; Not amb, Not ambulatory.
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cohort. They are dependent in all activities of daily living, are
non-verbal, and can take steps only if assisted with a walker.
Both siblings from family 387 had significant aggressive and
self-mutilating behaviour consisting of head banging and
biting, requiring treatment with antipsychotic agents, mouth
guard and protective helmet. Individuals II-2 from family 387
and II-1 from family 483 show extraneural manifestations con-
sisting of retinopathy, bilateral macroscopic renal cysts (but
normal renal function), and postaxial polysyndactyly of one
foot (table 1 and see online supplementary figure S1, D-F).

The presence of rare and potentially deleterious mutations in
TMEM231, which segregate with the disease in two unrelated
FC families, strongly suggests that disruption of this gene
causes JBTS in our subjects. The fact that the three individuals
with the mutations in TMEM231 show a similar form of JBTS
also supports the involvement of this gene. Furthermore,
several observations indicate that TMEM231 plays a key role in
the cilia, and physically interacts with known JBTS genes.
TMEM231 encodes a transmembrane protein that localises at

the base of the ciliary axoneme at the transition zone.19

Recently, TMEM231 was shown to be part of the B9 complex,
which is required for a diffusion barrier between the cilia and
plasma membranes that maintains the integrity of the cilia as a
privileged membrane domain.19 The B9 complex includes at
least 13 proteins (BD91, BD92, TCTN1, TCTN2, TCTN3,
CC2D2A, TMEM216, TMEM67, TMEM237, TMEM231,
MKS1, AHI1, TMEM17), all of which, with two exceptions
(TCTN3, TMEM17), are involved in JBTS and/or Meckel–
Gruber syndrome (MKS), a related ciliopathy.19 20 Proteomic
studies using the MKS proteins BD91 or BD92 as baits have
shown that TMEM231 is in a complex with TCTN1, TCTN2,
MKS1, AHI1 and CC2D2A.19 siRNA knockdown of TMEM231
disrupts the integrity of the ciliary barrier and the localisation
of components of the B9 complex at the transition zone, result-
ing in a reduction of cilia formation and ciliary localisation of
signalling receptors.19 TMEM231 knockout mice die at E15.5
with severe vascular defects, and display typical features of
ciliopathy, namely microphthalmia, polydactyly and

Figure 1 (A) Segregation of mutations in TMEM231 in JBTS families. (B) Brain MRI from individual II-1 from family 387 showing the ‘molar tooth
sign’. (C) Left panel, scheme showing the presence of the mutations with respect to the different TMEM231 Ensemble-annotated transcripts
predicted to produce proteins; right panel, the corresponding TMEM231 proteins are depicted in the right panel. TM, denotes the presence of a
transmembrane domain, as predicted by SMART algorithm. (D) Amino acid conservation of the residues affected by the p.Tyr4* and p.Asp209Asn
mutations in TMEM231. Amino acid alignments were generated using homologene (NCBI).
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abnormalities in patterning of ventral spinal cord.19 Altogether,
these observations indicate that autosomal-recessive mutations
in TMEM231 are a cause of JBTS.

JBTS in FCs show both locus and allelic heterogeneity. We
identified three JBTS genes in this population with a total of 14
different alleles. Three mutations in C5ORF42, two mutations
in CC2D2A and two mutations in TMEM231 were found in at
least two unrelated affected individuals (table 1). Our analysis
indicates that each of these mutations is located within a dis-
tinct haplotype in these individuals, suggesting the existence of
multiple founder effects.12 Founder effects are typically asso-
ciated with an increase in the frequency of a specific autosomal
recessive allele, which is often accompanied by other alleles that
remain at their usual background frequency. Interestingly, for
each of these three JBTS genes, we found at least two founding
mutations. It is likely that more of these complex founder
effects will be unravelled with the use of genomic sequencing.

In summary, combining this study and our previous one, we
were able to explain the underlying genetic cause of JBTS in 21/
24 FC individuals using exome sequencing. In the course of this
work, we identified TMEM231 as a novel JBTS gene. This dis-
covery gives further support to the concept that JBTS results
from disruption of the barrier at the ciliary transition zone.
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