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ABSTRACT
Complex I deficiency is the most frequent mitochondrial
disorder presenting in childhood, accounting for up to
30% of cases. As with many mitochondrial disorders,
complex I deficiency is characterised by marked clinical
and genetic heterogeneity, leading to considerable
diagnostic challenges for the clinician, not least because
of the involvement of two genomes. The most prevalent
clinical presentations include Leigh syndrome,
leukoencephalopathy and other early-onset
neurodegenerative disorders; fatal infantile lactic acidosis;
hypertrophic cardiomyopathy; and exercise intolerance.
Causative genetic defects may involve the seven
mitochondrial-encoded or 38 nuclear-encoded subunits of
the enzyme, or any of an increasing number of assembly
factors implicated in the correct biosynthesis of complex
I within the inner mitochondrial membrane. In this review,
we discuss recent advances in knowledge of the
structure, function and assembly of complex I and how
these advances, together with new high-throughput
genetic screening techniques, have translated into
improved genetic diagnosis for affected patients and their
families. Approximately 25% of cases have mitochondrial
DNA mutations, while a further ∼25% have mutations in
a nuclear subunit or in one of nine known assembly
factors. We also present a systematic review of all
published cases of nuclear-encoded complex I deficiency,
including 117 cases with nuclear subunit mutations and
55 with assembly factor mutations, and highlight clinical,
radiological and biochemical clues that may expedite
genetic diagnosis.

INTRODUCTION
Complex I (nicotinamide adenine dinucleotide
(NADH):ubiquinone oxidoreductase, Enzyme
Commission number EC 1.6.5.3) is the first and
largest enzyme of the mitochondrial respiratory
chain (RC) and oxidative phosphorylation
(OXPHOS) system, and plays critical roles in trans-
ferring electrons from reduced NADH to coenzyme
Q10 (CoQ10, ubiquinone) and in pumping protons
to maintain the electrochemical gradient across the
inner mitochondrial membrane. This electrochem-
ical gradient, generated by complexes I, III and IV, is
subsequently harnessed by complex V (ATP syn-
thase) to synthesise ATP from ADP and inorganic
phosphate. Complex I is also the major site for the
generation of reactive oxygen species (ROS), which
are increasingly recognised to be important signal-
ling molecules determining the health and fate of
the mitochondrion and of the whole cell.
Isolated deficiency of complex I is the most com-

monly identified biochemical defect in childhood-

onset mitochondrial disease, accounting for
approximately a third of all cases of OXPHOS disor-
ders.1 Complex I deficiency is clinically heteroge-
neous but the majority of affected individuals
develop symptoms during the first year of life
and have a rapidly progressive disease course, result-
ing in a fatal outcome in childhood. However, clin-
ical presentations may vary, ranging from fatal
neonatal lactic acidosis to infantile-onset Leigh syn-
drome, childhood-onset mitochondrial encephalo-
myopathy, lactic acidosis and stroke-like episodes
(MELAS) syndrome and, in some cases, adult-onset
encephalomyopathic syndromes of variable sever-
ity. Presentation with single organ involvement is
also recognised, for example, isolated hypertrophic
cardiomyopathy (HCM) or Leber ’s hereditary optic
neuropathy (LHON).
Inherited complex I deficiency can result from

mutations in either mitochondrial DNA (mtDNA)
or nuclear-encoded structural subunits of the
enzyme or from mutation of any of a rapidly
expanding number of nuclear-encoded complex I
assembly factors. To date, genetic defects have been
reported for all seven mtDNA-encoded complex I
subunits, 17 of the 38 nuclear-encoded subunits and
nine assembly factors. Pathogenic mtDNA muta-
tions may be maternally inherited or sporadic, while
most nuclear-encoded complex I defects are inherited
as autosomal recessive traits, although a small
number of X-linked defects have been reported.
In this review, we discuss the structure, function

and assembly of the enzyme; report the findings of
a systematic review of the clinical features of 172
published patients with nuclear-encoded complex I
defects, including clinical and radiological clues
that may aid genetic diagnosis; and consider
potential approaches to developing treatments for
these devastating disorders.

STRUCTURE AND FUNCTION OF COMPLEX I
The L-shaped structure of complex I was initially
revealed by electron microscopy; further detail was
subsequently provided by x-ray crystallography
studies of the enzyme in the bacterium Thermus
thermophilus and the fungus Yarrowia lipolytica,
which demonstrated the relative positions of the
subunits in these organisms.2–4 Efforts are under-
way to determine the positions of the subunits in
the mammalian enzyme by crystallising purified
complex I from bovine heart. Human complex I is
very similar to bovine complex I and consists of 45
different subunits (figure 1A),5 14 of which are
necessary for catalytic function and are conserved
in all species that have a complex I including
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bacteria.6 Seven of these ‘core’ subunits are hydrophobic and
encoded by mtDNA (ND1, ND2, ND3, ND4, ND4L, ND5 and
ND6), whereas the other seven are hydrophilic and encoded by
nuclear DNA (NDUFV1, NDUFV2, NDUFS1, NDUFS2,
NDUFS3, NDUFS7 and NDUFS8). These 14 subunits have
been defined as the ‘minimal enzyme’, while the remaining
subunits are often referred to as ‘supernumerary ’ or ‘accessory ’.
The minimal enzyme includes the core subunits of complex I
considered essential for catalysing electron transfer from
NADH to CoQ10 and generating the proton motive force, as
well as the substrate binding sites and all the known redox
centres of the enzyme.

Complex I has three functional modules: the electron input
or N module and the electron output or Q module, both
located in the peripheral arm which protrudes into the mito-
chondrial matrix, and the proton translocase P module within
the membrane arm. All seven nuclear-encoded core subunits
are located within the N and Q modules, while the seven
mtDNA-encoded core subunits are in the P module. Electrons
from NADH, which is oxidised at the matrix-protruding end
of the peripheral arm, are passed to flavin mononucleotide
(FMN), which is non-covalently bound to the NDUFV1
subunit, then via a chain of iron–sulphur (Fe–S) clusters to
CoQ10, which is reduced near the junction of the peripheral
arm with the membrane arm. The energy generated by the
series of electron transfer reactions within the peripheral arm is

transduced, by conformational changes in the membrane arm,
to pump four protons into the intermembrane space.4 These
four protons contribute ∼40% of the electrochemical gradient
that drives ATP synthesis.4 The function of the 31 nuclear-
encoded supernumerary subunits is still poorly understood, but
putative functions include: supporting the structural stability
of the enzyme by forming a ‘scaffold’ around the core subunits;
protecting the core subunits against oxidative stress; participat-
ing in complex I assembly; and regulating the activity of the
enzyme.

COMPLEX I ASSEMBLY
In addition to the structural components of complex I, there
are a number of known and putative assembly factors, which
chaperone the 45 subunit proteins, one FMN moiety and eight
Fe–S clusters through the intricate process of assembling the
final ∼980 kDa holoenzyme.7 To date, nine such assembly
factors have been linked to human disease (NDUFAF1,
NDUFAF2, NDUFAF3, NDUFAF4, C20ORF7, C8ORF38,
nucleotide-binding protein-like (NUBPL), FOXRED1 and
ACAD9). It is likely that many more complex I assembly
factors will be identified considering that the much smaller
complex IV, which has only 13 subunits, requires more than 15
assembly factors for its assembly.8 In support of this, phylogen-
etic profiling studies have identified 25 putative complex I
assembly factors.9

Figure 1 Structure and assembly of human mitochondrial respiratory chain complex I. (A) Structure of complex I, showing the 45 subunits
(seven encoded by mitochondrial DNA and 38 by nuclear genes), colour-coded according to the clinical phenotype(s) associated with mutations of
these genes (see key at the right of figure). Subunits in grey have not yet been linked to human disease. The three functional modules of the enzyme
(N electron accepting, Q ubiquinone reducing and P proton pumping) are shown. The oxidation of nicotinamide adenine dinucleotide by flavin
mononucleotide generates a flow of electrons that are transported by the Fe–S clusters contained in the subunits NDUFV1-V2-S1-S8 and S7 to
ubiquinone, which is consequently reduced to ubiquinol. The energy generated by the electron flow produces a conformational change within the
holocomplex which allows for the pumping of four protons (H+) towards the intermembrane space. (B) Assembly pathway of complex I. The main
subassemblies (numbered according to the scheme proposed by McKenzie and Ryan7) and the proposed sites of action of the nine assembly factors
so far linked to human disease are indicated. Subunits and assembly factors are colour-coded according to the associated phenotype, as shown in
the key at the top right.
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Complex I assembly has been studied in various model
systems: the fungus Neurospora crassa, mouse cell lines lacking
mtDNA-encoded subunits; pulse-chase experiments in human
cell lines in which mitochondrial protein synthesis is temporar-
ily blocked by cycloheximide and then allowed to recommence;
and in vitro mitochondrial import assays of tagged nuclear-
encoded complex I subunits. However, by far the most infor-
mation about human complex I assembly has come from
studies of fibroblasts from patients with mutations in complex
I subunits and assembly factors. This has been the subject of
intense research interest, which has allowed the identification
of at least seven complex I assembly intermediates.7 10 So far,
precise roles have been elucidated for only a few of the known
complex I assembly factors. C20ORF7, C8ORF38, NDUFAF3
and NDUFAF4 have all been implicated early in the complex I
assembly process, while NDUFAF1, evolutionary conserved sig-
nalling intermediate in Toll pathways (ECSIT) and ACAD9
appear to be involved at an intermediate stage and NDUFAF2
in the late stages.11 Possible functions of the various putative
complex I assembly factors/chaperones include assembly of
Fe–S clusters, translational coactivation of complex I subunits
and direction of nuclear-encoded complex I subunits to the
correct intramitochondrial compartment (ie, to the matrix side
of the enzyme or to the intermembrane space).7

The first step of complex I assembly is thought to involve
incorporation of newly translated mtDNA-encoded subunits
into early membrane arm assembly intermediates.10 This step
is chaperoned by C20ORF7 which, together with C8ORF38,
may function as a translational activator of ND1.12

Alternatively, C20ORF7 may insert ND1 into the membrane or
facilitate ND1 into an early membrane arm intermediate.
C20ORF7 contains a predicted S-adenosyl methionine-
dependent fold, suggesting that it may methylate proteins,
RNA or DNA within mitochondria.13 14 Only two complex I
subunits are known to be methylated:15 NDUFS2 (methylated
arginine R323) and NDUFB3 (contains two or three highly
conserved methylated histidines).16 Like ND1, NDUFB3 is
located in the membrane arm, suggesting that post-
translational methylation may play a role in the assembly or
stability of the membrane arm. Recently, C20ORF7 mutations
were linked to combined deficiency of complexes I and IV,17

and knockdown of C20ORF7 expression in control cells using
lentiviral-mediated RNAi18 also led to decreased complex IV
activity, suggesting that C20ORF7 may be necessary for assem-
bly of RC supercomplexes.17 18

The formation of the peripheral matrix arm begins with the
assembly of four core subunits: NDUFS7 and NDUFS8 (inter-
mediate 1), followed by NDUFS3 and NDUFS2 (intermediate 2),
to form intermediate 3a (numbering based on nomenclature of
McKenzie and Ryan;7 see figure 1B). The assembly factors
NDUFAF3 (C3ORF60) and NDUFAF4 (C6ORF66), mutations
of which cause fatal neonatal-onset complex I deficiency,19 20

tightly associate with intermediate 3a, and it has been sug-
gested that NDUFAF3 and NDUFAF4 may be involved in
membrane anchoring of intermediate 2 and promoting matur-
ation to intermediate 3a, which also includes the NDUFA9
subunit (figure 1B). Both NDUFAF3 and NDUFAF4 remain
associated with intermediates 4a (∼400 kDa), 5a (∼650 kDa)
and 6a (∼830 kDa) as complex I assembly proceeds, but are dis-
sociated just before the formation of the mature holocomplex
(figure 1B).19

NDUFAF1 (CIA30) and ECSIT mediate the next step in
complex I assembly: the joining of intermediate 4a (a

∼400 kDa subcomplex containing at least NDUFS2, NDUFS3,
NDUFS7, NDUFS8 and ND1) with a second membrane arm
intermediate 4b of ∼460 kDa (containing at least ND2, ND3
and ND6).10 Pathogenic NDUFAF1 mutations resulted in iso-
lated complex I deficiency and cardiomyopathy in two patients,
associated with stalling of complex I assembly at the ∼400 kDa
and ∼460 kDa intermediates.21 22 No mutations have been
identified in ECSIT to date, but mutations in another factor,
ACAD9, which also associates with NDUFAF1 and ECSIT,
appear to be a relatively common cause of complex I deficiency
presenting as HCM and/or exercise intolerance.

As complex I assembly proceeds, NDUFA13 is added to the
∼400 and ∼460 kDa membrane arm intermediates to form
intermediate 5a.23 Subunits ND4 and ND5 are then assembled
into the growing complex, possibly together with other subu-
nits in the small membrane arm intermediate 5b.24 The result-
ing ∼830 kDa intermediate 6a remains associated with
NDUFAF1 and has been shown by co-immunoprecipitation to
contain ND1, ND2, ND3, ND6, NDUFB6, NDUFA9, NDUFS3
and NDUFS7 (but not NDUFS5 or NDUFA8).21 NDUFA1,
NDUFA2, NDUFA6,23 NDUFB8 and NDUFA1010 also appear
to be assembled into intermediate 6a at this stage. The assem-
bly factor NDUFAF2, mutations of which cause progressive
encephalopathy, associates with the ∼830 kDa complex and
mediates a late step in the complex I assembly process.25

The last step for completion of fully assembled complex I is
insertion of the ∼300 kDa N module (intermediate 6b), which
provides the entry point for electrons into the complex.26 In
vitro import studies demonstrated the N module to contain at
least NDUFS1, NDUFV1, NDUFV2, NDUFV3, NDUFS4,
NDUFS6, NDUFA12 and FMN (which is non-covalently
bound to NDUFV1).10 Once holocomplex I assembly is com-
plete, the assembly factors NDUFAF1, ECSIT, NDUFAF2,
NDUFAF3 and NDUFAF4 dissociate from the mature holoen-
zyme. The electron transfer activity of complex I also requires
the incorporation of eight Fe–S clusters. This step is most likely
carried out by at least one assembly factor: HuIND1 (Fe–S
protein required for NADH dehydrogenase), also known as
NUBPL. NUBPL is a mitochondrial protein which binds Fe–S
clusters via a conserved CxxC motif27 and incorporates these
into various subunits of the enzyme within intermediates 1
(NDUFS7 and NDUFS8) and 6b (NDUFS1 and NDUFV1).27 28

The observation that newly synthesised subunits can be
interchanged with pre-existing counterparts within mature
complex I suggests that complex I assembly does not always
proceed via the linear model described above, but that a
subunit exchange mechanism may also be employed to repair
damaged enzyme and maintain complex I homeostasis.24 It
should be emphasised that the precise mechanism of complex I
assembly is still debated, and may be modified as new complex
I assembly factors are discovered. A further level of complexity
is that it is likely that the majority of complex I exists within
RC supercomplexes or ‘respirasomes’ (composed of at least
complex I+complex III+complex IV in various stoichiometric
ratios).29 Supercomplexes are thought to provide structural and
functional advantages to the individual RC enzymes, including
stabilisation, protection from degradation, increased efficiency
of electron transport and substrate channelling, and decreased
electron and proton leakage.30 It has been further suggested
that complex I assembly may only occur in the context of the
respirasome.31 The existence of supercomplexes may explain
the defects of other RC complexes sometimes associated with
complex I mutations; for example, complex III defects in some
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patients with NDUFS4 subunit mutations32 33 and complex IV
deficiency in occasional patients with defects in the complex I
assembly factor C20ORF7.17

COMPLEX I DEFICIENCY: CLINICAL PHENOTYPES
Clinical presentation of complex I deficiency is extremely het-
erogeneous, and ranges from neonatal-onset lactic acidosis to
Leigh syndrome and other encephalomyopathies, as well as
multisystem disease involvement, and single organ presenta-
tions, for example, with HCM or isolated optic neuropathy.
The more commonly recognised phenotypes are described
below, together with the responsible genes.

Fatal infantile lactic acidosis
The earliest presentation of complex I deficiency is with con-
genital lactic acidosis, which may present in the neonatal
period or early infancy. This disorder is typically rapidly pro-
gressive, resulting in death in infancy, and has been linked to
mutations in several nuclear-encoded complex I subunits
(NDUFV1, NDUFS2, NDUFS6, NDUFS8, NDUFA11 and
NDUFB3) and assembly factors (NDUFAF3 and C20ORF7)
(see online supplementary table S1). Few mutations have been
reported in several of these genes, and so it is difficult to
predict whether fatal infantile lactic acidosis (FILA) will be the
characteristic clinical presentation for these genetic defects or
merely reflects a severe complex I deficiency. An exception
seems to apply in the case of NDUFS6 mutations, since these
caused FILA in seven children from four unrelated families.34 35

Leigh syndrome
The most frequent presentation of complex I deficiency is
Leigh syndrome, or subacute necrotising encephalomyelopathy.
Affected children typically have normal early development but
present in late infancy or early childhood with progressive
neurological abnormalities related to brainstem and/or basal
ganglia dysfunction. Clinical signs include respiratory abnor-
malities, nystagmus, ataxia, dystonia and hypotonia. Stepwise
neurodevelopmental regression may follow intercurrent ill-
nesses. Often there may be some initial recovery, but never
back to the baseline neurodevelopmental trajectory. Leigh syn-
drome was originally defined neuropathologically (bilateral
symmetrical necrotic lesions characterised by the histological
quadrad of spongiosis, neuronal loss, astrocytosis and capillary
proliferation)36 but now can be diagnosed in life on the basis of
the clinical features, elevated lactate levels in blood and/or cere-
brospinal fluid and characteristic appearances on MRI of the
brain (bilateral symmetrical hyperintensities in the basal
ganglia and/or brainstem in T2 weighted sequences).37 Leigh
syndrome results from severely impaired cerebral mitochondrial
energy production, and is biochemically and genetically
extremely heterogeneous. Although any OXPHOS defect may
cause Leigh syndrome, isolated complex I deficiency is the most
frequently observed biochemical abnormality, accounting for
34% of cases.37 Mutations in six mtDNA-encoded (ND1, ND2,
ND3, ND4, ND5 and ND6) and 11 nuclear-encoded (NDUFS1,
2, 3, 4, 7, 8, NDUFV1, NDUFA1, 2, 9, 10) complex I subunits
and four assembly factors (NDUFAF2, C8ORF38, C20ORF7
and FOXRED1) have been linked to Leigh syndrome to date
(see online supplementary table S1 for details and relevant
references).

Leukoencephalopathy
Other patients with infantile-onset complex I deficient ence-
phalomyopathy have a leukodystrophy characterised by cystic

white matter changes in the brain MRI. Clinical features in
these children include progressive myoclonic epilepsy, episodes
of vomiting, global developmental delay and regression, spasti-
city, dystonia, cerebellar ataxia, ptosis, ophthalmoplegia, nys-
tagmus and optic atrophy. There may be associated
macrocephaly. This phenotype has been particularly linked to
mutations of two nuclear-encoded complex I subunits,
NDUFV1 and NDUFS1, with five and 16 reported cases,
respectively (see online supplementary table S1).
Neuroradiological appearances in these patients can be con-
fused with vanishing white matter disease.25 38–40 A single
patient with NDUFS8 mutations also presented with leukoen-
cephalopathy, as did occasional patients with mutations in the
NDUFAF4 and NUBPL assembly factors (see online supplemen-
tary table S1).

Mitochondrial encephalomyopathy, lactic acidosis and
stroke-like episodes
Patients with MELAS syndrome usually have symptom-onset
in childhood, with seizures, migraines, vomiting, exercise
intolerance, proximal limb weakness and short stature. The
first stroke-like episode (characterised by transient hemiparesis
and/or hemianopsia, often preceded by focal seizures) typically
occurs in the first decade of life. Isolated complex I deficiency
may be seen in MELAS syndrome, particularly in individuals
with ND subunit mutations.41 However, ∼80% of cases are
caused by a common mitochondrial transfer RNA (tRNA)
mutation m.3243A>G which may also be associated with mul-
tiple RC defects. Strokes do not seem to be particularly asso-
ciated with nuclear-encoded complex I deficiencies, although
stroke-like episodes were reported in two Dutch patients with
ACAD9 mutations, which are more usually associated with
exercise intolerance and/or cardiomyopathy.42

Cardiomyopathy
Complex I deficiency may present in infancy with isolated
HCM, sometimes with non-compaction of the left ventricular
wall.22 Isolated HCM has been reported with mutations in
nuclear-encoded subunits (NDUFS2 and NDUFV240 43 44) and
assembly factors (most commonly ACAD9, usually with asso-
ciated exercise intolerance,45 but also NDUFAF122). Affected
infants may succumb to FILA46 or there may be associated pro-
gressive encephalopathy, usually in the Leigh syndrome spec-
trum, as has been reported for mutations in several genes:
NDUFS2, NDUFS4, NDUFS8, NDUFA2, NDUFA10, NDUFA11
and ACAD9 (see online supplementary table S1 for details). It
is possible that cardiomyopathy is under-recognised in complex
I deficiency, since detailed cardiac investigations may not be
performed in some patients with severe neurological presenta-
tions. Conduction defects such as Wolff–Parkinson–White syn-
drome have been reported in patients with both mtDNA (eg,
m.13513G>A) and nuclear-encoded (eg, NDUFAF1) complex I
defects.21 47

BIOCHEMICAL ASSESSMENT OF COMPLEX I
In most centres complex I deficiency is diagnosed by spectro-
photometric assay of rotenone-sensitive NADH: ubiquinone
oxidoreductase activity in biopsied tissue (usually skeletal
muscle, but another affected tissue such as cardiac muscle or
liver may be biopsied). Spectrophotometric assays may also be
performed in cultured skin fibroblasts from patients, but this
is not an ideal tissue for investigation since many patients
(particularly those with mtDNA mutations, but also some
nuclear-encoded defects) do not express complex I deficiency in
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fibroblasts. In most specialist centres, fibroblasts are assayed as
a second-line investigation in order to determine whether there
is a systemic complex I deficiency or a tissue-specific defect.
Rotenone is used in the assay because there are many NADH
oxidoreductases in the cell, but only complex I is rotenone-
sensitive; residual NADH oxidoreductase activity after rotenone
administration is subtracted from total NADH oxidoreductase
activity in order to derive complex I activity. The activity of
complex I is usually expressed as a ratio to a mitochondrial
matrix enzyme (most commonly one of the Krebs cycle
enzymes, such as citrate synthase or succinate dehydrogenase)
to control for varying mitochondrial content between samples.

The biochemical diagnosis of complex I deficiency is not
trivial and consequently there are no universally accepted diag-
nostic criteria. Measurement methods and reference ranges vary
between laboratories: some centres use values <30% of the
control mean; others use anything below the control range;
and quality assurance schemes are still in their infancy.48

Isolated complex I deficiency refers to a severe reduction of
complex I, with activities of other OXPHOS complexes within
(or close to) the reference range.1 A potential caveat is that the
spectrophotometric NADH to ubiquinone oxidoreductase assay
is only a measure of redox activity within the peripheral arm.
Mutations of membrane arm subunits, which affect proton
pumping rather than electron transfer, may theoretically result
in apparently ‘normal’ enzyme activity. Therefore, normal
complex I enzyme activity does not completely exclude the
possibility of complex I deficiency, as has been demonstrated
for patients with mutations in the peripherally located ND5
subunit.41 More recently mini-oxygraphy methods have been
developed; while these do not give a specific measurement of
complex I activity, they do allow assessment of the global
oxygen consumption capacity of isolated mitochondria or
intact cells.49 50 In addition, immunocapture-based methods
have been used to interrogate the function of complex I.22 51

The presence of individual complex I subunits may be deter-
mined by western blot analysis, and the technique of blue
native gel electrophoresis (BNGE) is proving to be a powerful
method for studying the assembly of the complex I holoen-
zyme and dissecting specific complex I assembly defects.10

GENETICS OF COMPLEX I DEFICIENCY
Complex I deficiency is genetically extremely heterogeneous
and several patterns of inheritance have been observed, includ-
ing maternal, autosomal recessive and X-linked. This genetic
complexity, superimposed on the clinical heterogeneity dis-
cussed above, leads to considerable difficulties in establishing
genetic diagnoses for patients with complex I deficiency.
Complex I disease genes have been identified by candidate gene
analysis (NDUFAF1,21 NDUFAF2,25 C8ORF389); genetic
linkage and homozygosity mapping approaches (NDUFAF3,19

NDUFAF4,20 C20ORF7,18 FOXRED151); and more recently by
targeted or whole exome sequencing using next generation
sequencing (NGS) techniques (NUBPL,52 ACAD953).

mtDNA mutations
Maternally inherited mutations in mtDNA-encoded complex I
subunits (ND subunits) were initially linked to LHON almost
25 years ago.54 Mutations associated with LHON are homo-
plasmic. Subsequently, heteroplasmic mutations in ND subu-
nits were reported in association with other clinical
phenotypes, such as dystonia, MELAS and Leigh syndrome.
Several recurrent mutations are recognised,55–58 and the ND5
subunit appears to be a particular hotspot for disease-causing

mutations.41 Many patients have features overlapping different
mitochondrial syndromes, for example some patients have
LHON plus dystonia and other patients may have features
overlapping MELAS, LHON and Leigh syndrome.41 A complete
list of the mtDNA mutations associated with complex I defi-
ciency can be found in the online Mitomap database (http://
www.mitomap.org/MITOMAP). Mutation pathogenicity can
be especially difficult to prove for mtDNA mutations since
mtDNA is extremely polymorphic and many mutations are
‘private’ to individual families. Factors supporting pathogen-
icity include heteroplasmy, segregation with disease within a
family, association with a similar disease phenotype in multiple
unrelated families and (the gold standard, but only possible in
cases where the biochemical defect is expressed in cultured
cells) demonstration of transfer of the biochemical phenotype
with the mtDNA mutation in transmitochondrial cybrids.
Mutation pathogenicity scoring criteria can also be helpful.59 It
should be noted that many mtDNA mutations are sporadic
and so the absence of a family history suggestive of maternal
inheritance does not exclude the possibility of a mtDNA muta-
tion. Studies of several cohorts of patients with complex I defi-
ciency from around the world have suggested a fairly uniform
prevalence of causative mtDNA mutations of ∼20%–

30%.58 60 61 These studies indicate that sequencing mtDNA is a
useful first-line genetic screening strategy in complex I defi-
ciency, since it will be possible to make a genetic diagnosis in a
significant minority; however, most cases will have a nuclear
defect.

Nuclear subunit mutations
So far, mutations in 17 of the 38 nuclear-encoded complex I
subunits have been reported to cause complex I deficiency,
including all seven nuclear-encoded core subunits and 10 of the
supernumerary subunits (see online supplementary table S1).
The first nuclear subunit mutations were identified by system-
atically sequencing core subunit genes in a relatively large
cohort of patients,62–65 and subsequently other mutations were
identified by homozygosity mapping approaches in consan-
guineous families.18 35 To date, more than 100 affected patients
have been reported: ∼60% with core subunit mutations and
∼40% with mutations in accessory subunits (see online supple-
mentary table S1). The most frequently observed phenotypes
were Leigh syndrome, leukoencephalopathy and HCM (see
online supplementary table S1; figure 1A and figure 2A). Most
mutations were reported for NDUFS1 (24 cases) and NDUFS4
(21 cases), but mutations of NDUFV1 and NDUFS2 also
occurred relatively frequently (14 and 12 cases, respectively). It
is not yet known whether the preponderance of core subunit
mutations reflects ascertainment bias (these subunits are more
likely to be included in targeted candidate gene screening pro-
jects) or whether core subunit mutations are more likely to
have functional consequences and that mild mutations in
accessory subunits can be tolerated without causing clinical
disease. Large-scale exome sequencing projects, which are not
subject to ascertainment bias, should help to answer this
question.

Assembly factor mutations
Nine nuclear-encoded complex I assembly factors have now
been linked to human disease, with mutations reported in 55
patients from 32 families so far (see online supplementary
table S1). The first complex I assembly defect was found using
a ‘genome subtraction’ method, in which genes that were
present in fungi with complex I but absent in fungal species
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without complex I were identified as putative complex I assem-
bly factors. This approach led to the discovery of B17.2L (now
renamed NDUFAF2) mutations in a patient with progressive
encephalopathy.25 Eight further patients with NDUFAF2 muta-
tions have since been reported (see online supplementary table
S1), all with similar clinical features and a characteristic neuro-
imaging appearance (see below). Mutations in NDUFAF1 were
linked to HCM in two unrelated patients by BNGE profiling
and candidate gene sequence analysis,21 22 while homozygosity
mapping revealed NDUFAF3 and NDUFAF4 to be complex I
assembly factors associated with FILA or severe infantile-
onset encephalopathies (see online supplementary table S1).
Phylogenetic profiling identified C8ORF38, C20ORF7 and
FOXRED1 as candidate complex I assembly factors, and these
were all subsequently linked to human disease using homozy-
gosity mapping.9 18 51 Finally, mutations in NUBPL were iden-
tified using a targeted next generation sequencing approach,52

while mutations in ACAD9 (previously thought to be involved
in fatty acid oxidation) were discovered to cause complex I defi-
ciency associated with HCM and/or exercise intolerance in a
whole exome sequencing project.53

Other genetic causes of complex I deficiency
Because complex I contains the largest number of mtDNA-
encoded subunits, isolated complex I deficiency may be the
initial biochemical defect in disorders of mtDNA replication
and translation, although later in the course of these disorders
there are usually multiple RC defects. The most frequent cause
of defective mtDNA replication is mutation of the POLG gene

encoding the catalytic subunit of DNA polymerase γ, and occa-
sional patients with POLG mutations do present with isolated
complex I deficiency. The most frequently diagnosed mtDNA
translation defects affect the mitochondrial tRNA molecules,
either as point mutations involving a single tRNA or large-scale
rearrangements which may delete several tRNA genes. More
recently, nuclear-encoded defects of mitochondrial translation
have been linked to isolated complex I deficiency; for example,
mutations in the MTFMT gene encoding the mitochondrial
methionyl-tRNA formyltransferase.66

APPROACHES TO DIAGNOSIS
From a clinical viewpoint, the important questions in complex I
deficiency are whether there are characteristic clinical features
of complex I deficiency; whether any particular clinical features
should arouse suspicion of specific gene defects; and finally
whether specific gene defects are associated with a better or
worse prognosis. Traditionally, it has been very difficult to iden-
tify genotype to phenotype correlations for mitochondrial dis-
orders, including complex I deficiency, because of the extreme
genetic heterogeneity underlying these diseases. Furthermore,
even the most specialised centres will only see small numbers
of patients with particular genetic defects, and so it is difficult
for physicians to identify clinical clues that may point to spe-
cific diagnoses. A further source of bias is the referral pattern
for individual clinicians; for example, different subgroups of
patients are likely to be referred to neurologists compared with
metabolic physicians or biochemical geneticists.

Figure 2 Genotype to phenotype correlations in nuclear-encoded complex I deficiency. (A) Venn diagram illustrating genotype to phenotype
correlations between mutations in nuclear-encoded complex I subunits and assembly factors and the main clinical phenotypes (neurological,
metabolic, cardiac and exercise intolerance). Note the considerable genetic heterogeneity for each clinical subgroup, and that several genetic defects
are associated with more than one phenotype. (B) Kaplan–Meier survival curves for nuclear-encoded complex I deficiency, according to age of
disease onset. All survival functions were calculated using SPSS V.20. (C) Pie chart illustrating the relative prevalence of the main clinical
phenotypes of nuclear-encoded complex I deficiency. (D) Kaplan–Meier survival curves for nuclear-encoded complex I deficiency, according to
clinical phenotype. (E) Kaplan–Meier survival curves for defects in nuclear-encoded complex I subunits, compared with assembly factor defects.
(F) Blood and cerebrospinal fluid lactate concentrations (mM) reported in patients with mutations in nuclear-encoded subunits (red) and assembly
factors (blue) of complex I. Normal lactate concentration is <2 mM.
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We sought to address these difficulties by performing a sys-
tematic review of all cases of genetically confirmed nuclear-
encoded complex I deficiency in order to search for genotype to
phenotype correlations and identify clinical, radiological or bio-
chemical patterns that may help to expedite genetic diagnosis
for affected individuals. Extensive literature searches of the
PubMed database were performed by both authors, using the
key words complex I deficiency, and names and aliases of all
the nuclear-encoded complex I subunits and known assembly
factors in order to obtain as near complete an ascertainment as
possible of all cases published in the 14-year period, February
1998–April 2012 inclusive. All cases of genetically confirmed
complex I deficiency with nuclear mutations were included in
the review. Cases where only one mutation had been identified
were excluded, with the exception of five hemizygous males
and a single heterozygous female with mutations in the
X-linked NDUFA1 gene. Other exclusion criteria were apparent
duplicate reports and cases where a mutation was reported but
no clinical information was supplied. In all, 65 papers were
included in the review, reporting a total of 172 patients: 117
with nuclear subunit mutations and 55 with assembly factor
mutations. A full list of the publications included in our
meta-analysis is given in the online supplementary material.

Genotype to phenotype correlations
The overall male to female ratio observed was 1.4 : 1 but when
this was broken down according to subtype of genetic defect,
the proportion was 1.7 : 1 for nuclear subunit mutations and
1 : 1 for assembly factor mutations. The reason for the male
preponderance with nuclear subunit mutations is not clear,
since only a handful of cases had mutations in the X-linked
NDUFA1 gene. Approximately 30% of cases had symptom-
onset in the neonatal period or infancy and a further ∼60% in
early childhood, meaning that the overwhelming majority of
cases with nuclear-encoded complex I defects present before
5 years of age. The distribution of age of onset was roughly the
same for subgroups with nuclear subunit mutations and assem-
bly factor defects (data not shown). In general, survival and
rates of disease progression are broadly related to age at onset
(figure 2B). The largest subgroup of patients presented with
early-onset neurodegenerative disease with symptoms/signs
compatible with the Leigh syndrome spectrum (39% of cases).
These patients had mutations in 21 different genes, so it is dif-
ficult to deduce genotype to phenotype correlations for
complex I deficiency with Leigh syndrome/Leigh-like features
(see online supplementary table S1; figure 1). Other patients
presented with a leukoencephalopathy (14%), an unspecified
encephalomyopathy (9%) or FILA (11%). Overall, 19% of cases
had HCM, associated with Leigh syndrome or other encephalo-
pathic illness in over half of these cases. The remaining 8% of
cases had miscellaneous clinical features, including exercise
intolerance (4%), myoclonic epilepsy (2%), cerebellar ataxia
(2%) and recurrent lactic acidosis in a single case (figure 2C).
By definition, survival was poorest in those with FILA, while
those with isolated exercise intolerance had the best survival.
Rates of progression and survival were broadly the same for all
other phenotypic subgroups (figure 2D). Overall survival
appeared to be longer for patients with assembly factor muta-
tions, which is largely attributable to patients with ACAD9
mutations and exercise intolerance (figure 2E).

Defects in most genes (except where only a single case has
been reported) are associated with considerable clinical heterogen-
eity, as illustrated in figure 2A. For example, mutations in
NDUFAF1 led to fatal infantile HCM in one patient,22 but an

initially severe HCM later improved in another patient who was
still alive at 20 years.21 Similarly, the clinical spectrum associated
with mutations in C20ORF7 ranges from neonatal-onset mito-
chondrial disease leading to death within a few days to adults
with relatively mild Leigh syndrome associated with survival into
the fourth decade.18 42 The factors contributing to this observed
clinical variability are not well understood, but possible explana-
tions include genetic modifiers, environmental factors (eg, expos-
ure to severe viral illnesses, surgery and other metabolic stresses)
and modulation of phenotype by altered immune signalling.22 A
notable exception to this lack of genotype to phenotype correl-
ation is the case of ACAD9 mutations, where nearly all reported
cases had HCM and/or exercise intolerance.45 53 67 These patients
were also characterised by clinical response to riboflavin supple-
mentation.67 However, given the small number of patients
reported with mutations in most of the complex I nuclear
subunit and assembly factor genes, it is difficult to draw definitive
conclusions about genotype to phenotype correlations.

Neuroimaging clues
MRI brain changes are frequently observed in patients with
complex I deficiency, but in most cases are neither specific nor
associated with particular genetic defects. A single-centre retro-
spective review of MRI scans from 30 patients with genetically
confirmed complex I deficiency revealed involvement of brain-
stem structures in 100% of their patients and basal ganglia
lesions (particularly affecting the putamina) in 90%.68 The
brainstem lesions appeared as hyperintensities in the T2 and
Fluid Attenuated Inversion Recovery (FLAIR) sequences and
were hypointense in T1-weighted images. Within this series,
stroke-like lesions appeared to associate with mtDNA muta-
tions and leukoencephalopathy with nuclear subunit muta-
tions. Cerebellar involvement was noted in ∼45% of cases, and
occurred with both mtDNA and nuclear gene defects.68 Lebre
et al reported that the combination of brainstem and striatal
lesions was infrequently observed in their control groups
(MT-TL1 mutations and pyruvate dehydrogenase deficiency),
but comparison was not made with other RC defects causing
Leigh syndrome (eg, complex IV deficiency caused by SURF1
mutations and complex V deficiency caused by MT-ATP6 muta-
tions), which may present with similar MRI appearances.37

In our systematic review, detailed MRI brain reports were
available for 82 of the 172 patients with nuclear-encoded
complex I deficiency. Of these, only 13% had isolated basal
ganglia lesions, while 28% had isolated brainstem lesions and
24% had both basal ganglia and brainstem lesions, supporting
the notion that brainstem lesions may be particularly frequent
in complex I deficient Leigh syndrome. However, systematic
studies of other causes of Leigh syndrome are needed to deter-
mine the specificity of this observation, as discussed in the previ-
ous paragraph. A highly specific neuroimaging pattern was only
seen with mutations in the NDUFAF2 assembly factor: brain-
stem lesions within the mamillothalamic tracts, substantia
nigra, medial lemniscus, medial longitudinal fasciculus and spi-
nothalamic tracts on T2-weighted scans.25 52 69–71 These
patients did not have changes in the thalami and basal ganglia.
In all, 24% of all complex I deficient cases in our review had neu-
roimaging features of leukoencephalopathy, most frequently
associated with NDUFS1 (16 cases) and NDUFV1 (five) muta-
tions, but also in single cases with NDUFS8, NDUFAF3 and
NUBPL mutations. Cerebellar involvement was reported in nine
cases, spinal cord lesions were documented in three cases and
four patients had partial or complete agenesis of the corpus cal-
losum. It is possible that other specific imaging patterns may
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emerge for subgroups of complex I deficiency, as further patients
are genetically characterised. For now, MRI appearances of Leigh
syndrome with brainstem and basal ganglia involvement cannot
be considered sufficiently specific to avoid the need for muscle
biopsy and determination of specific RC enzyme activities.

Histological clues
Most children with complex I deficiency have only minor non-
specific abnormalities in muscle histology, for example, mild
lipid accumulation or fibre type disproportion. The presence of
ragged red fibres should arouse suspicion of an underlying
mtDNA defect, which may be a large-scale rearrangement or
point mutation, or a defect of mtDNA maintenance or transla-
tion. Ragged red fibres are not usually observed in nuclear-
encoded complex I defects but were reported in single cases
with NDUFS4, NDUFS7, FOXRED1 and NUBPL muta-
tions.32 52 72 In addition, occasional patients with nemaline
rods and complex I deficiency have been reported,73 and in one
of these cases mutations of the structural subunit NDUFB3
were identified recently.74

Biochemical clues
Plasma and cerebrospinal fluid lactate were frequently elevated
in the reported cases and do not appear to discriminate
between different molecular genetic defects, nor was there any
significant difference between patients with nuclear subunit
mutations and those with assembly factor defects (figure 2F).
Moreover, lactate levels did not correlate with residual complex
I activity. The results of other metabolic investigations (plasma
amino acid and acylcarnitine profiles and urinary organic acids)
were very infrequently reported, and so it is not possible to
draw any conclusions regarding whether these might provide
diagnostic clues towards specific molecular genetic defects. As
expected, most cases had isolated deficiency of complex I in
skeletal muscle and fibroblasts (and other tissues such as heart
and liver where they were assayed). In most cases, residual
activity of complex I was greater in fibroblasts than in skeletal
muscle. There does not appear to be any correlation between
residual enzyme activity and specific genetic defect (see online
supplementary table S1). In occasional cases, a more wide-
spread OXPHOS defect was observed; for example, a recent
report described complexes I and IV deficiencies in a family
with C20ORF7 mutations.17 Similarly, five patients with
NDUFS4 mutations were reported to have combined deficien-
cies of complexes I and III32 62 75 76 and a further two cases
had a combined defect of complexes I and IV.52 However, the
majority of patients with mutations in these genes had isolated
complex I deficiency. Possible explanations for the presence of
multiple OXPHOS deficiencies in patients with complex I
mutations are that increased ROS generated by dysfunctional
complex I cause oxidative damage to other OXPHOS enzyme
complexes or that mutation of particular complex I subunits
leads to instability of RC supercomplexes, with subsequent
degradation and therefore loss of activity of enzymes not
assembled into supercomplexes.

Analysis of complex I assembly in patient tissues by BNGE is
emerging as a method for identifying patients with abnormal
subassemblies of the enzyme, and directing genetic investigations
towards particular candidate genes in these patients. For example,
all patients with NDUFS4 mutations reported in the literature
accumulate a ∼830 kDa subassembly lacking the N module;77

BNGE screening may be the most efficient way to detect this

subgroup of patients. Patients with NDUFAF1 defects also appear
to have a characteristic subassembly profile, with accumulation of
the ∼400 and ∼460 KDa subassemblies.21 22

On the basis of the above clinical, neuroradiological, bio-
chemical and genetic considerations, we suggest a diagnostic
flowchart as depicted in figure 3.

SECONDARY COMPLEX I DEFICIENCY
A number of ‘secondary’ causes of complex I deficiency have been
reported, most notably Parkinson’s disease (PD).78 Complex I defi-
ciency was first linked to PD in the 1980s when it became
apparent that there was a high incidence of PD in people
who had recreationally used MPTP (1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine), a known inhibitor of complex I.79

Subsequently, a specific reduction of complex I activity was noted
in postmortem substantia nigra specimens from subjects with
PD.80 Mutations of mtDNA-encoded subunits of complex I have
been associated with various cancers, notably thyroid oncocytic
tumours.81 Furthermore, we have recently shown that an
MT-ND2 mutation appears to be involved in tumour cell resist-
ance to the chemotherapeutic agent cisplatin.82 Complex I defi-
ciency has also been linked to several other disease processes,
including autism,83 84 diabetes mellitus85 and a subtype of
Charcot Marie Tooth disease.86 A detailed discussion of secondary
complex I deficiencies is not possible here owing to space con-
straints; the reader is referred to a recent review by Schapira.78

PATHOGENIC MECHANISMS
While impaired ATP production is undoubtedly a major conse-
quence of complex I deficiency, effects of mutations on the
other functions of complex I are also likely to play a significant
part in the pathogenesis of clinical disease. For example,
complex I is a major site of ROS production and ROS are now
regarded as important signalling molecules effecting communi-
cation between mitochondria and other subcellular compart-
ments. Studies have shown that superoxide production is
inversely correlated with complex I activity in complex I defi-
cient fibroblasts.87 Furthermore, fibroblasts with very low
residual activity had increased levels of ROS and fragmented
mitochondrial morphology,88 suggesting that these deficient
mitochondria were being targeted for autophagocytic destruc-
tion or mitophagy.89 The membrane potential is reduced in
complex I deficient fibroblasts90 91 and there appears to be a
linear correlation between membrane potential and increased
superoxide-derived ROS levels.92 Finally, reduced ATP produc-
tion was closely related to ROS levels and membrane poten-
tial,93 suggesting that all of these factors are likely to play a
cumulative role in mediating disease pathogenesis.

MOUSE MODELS OF COMPLEX I DEFICIENCY
The recent development of a number of mouse models of
complex I deficiency is likely to lead to advances in understand-
ing disease mechanisms in complex I deficiency. The first
mutant mouse reported to have complex I deficiency was the
Harlequin mouse, which has a hypomorphic mutation in the Aif
gene encoding the apoptosis-inducing factor.94 However,
although the mutant mice appear to have isolated complex I
deficiency, mutations in the human homologue AIFM1 have
been reported to cause progressive encephalomyopathy with
multiple RC defects rather than isolated complex I deficiency,95

and so the Harlequin mouse may not be the best model for
human complex I deficiency. Since many knockout mouse
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models of nuclear-encoded mitochondrial genes are embryonic
lethal, mice with a conditional deletion of Ndufs4 exon 2 were
created using the Cre/loxP recombination system. These mice
are born apparently healthy but develop ataxia from 5 weeks,
leading to death from progressive encephalomyopathy by
7 weeks.96 Moreover, mice with conditional knockout of Ndufs4
in the central nervous system have neuropathological features
resembling Leigh syndrome.97 The Ndufs6 gene trap mouse
model has isolated complex I deficiency manifesting as cardio-
myopathy starting from postnatal day 30, with heart failure and
weight loss, sometimes causing sudden death, at approximately
4 months in the male mice and 8 months in the female
animals.98 Residual complex I activity is ∼10% of control values,
reflecting very low levels of fully assembled enzyme, and ATP
production is severely reduced in isolated mitochondria using
substrates needing complex I for oxidation. ROS production
appears to be normal in these mutant mice. Although none of
these mouse models perfectly replicates human disease (eg,
human NDUFS6 mutations have never been reported to cause
HCM), it is anticipated that these animal models will prove to

be invaluable tools in unravelling pathogenic mechanisms under-
lying mitochondrial disease, as well as providing a platform for
preclinical trials of candidate therapies for complex I deficiency.

APPROACHES TO TREATMENT
Disappointingly, it is still the case that there are no effective
curative therapies for the majority of cases of complex I defi-
ciency, and symptomatic measures remain the mainstay of
treatment for most patients.99 However, it has been known for
almost 20 years that occasional patients, particularly those
with a myopathic presentation, may show a clinical response
to supplementation with the vitamin riboflavin (B2)100 101.
Until recently, most of these patients did not have a genetic
diagnosis, with the exception of a case with a complex I defi-
cient myopathy caused by the m.3250T>C mtDNA muta-
tion.102 Riboflavin is necessary for the synthesis of FMN and
flavin adenine dinucleotide. Complex I contains a single FMN
moiety, non-covalently bound to the NDUFV1 subunit, but
patients with NDUFV1 mutations do not appear to be particu-
larly responsive to riboflavin. However, a number of recent

Figure 3 Diagnostic flowchart for
isolated complex I deficiency. Proposed
pathway for genetic investigations in
patients with isolated complex I
deficiency. *For suggested diagnostic
pathway for other oxidative
phosphorylation defects, see the
review by Rahman and Hanna.99

**This step is optional; because of the
large number of potential candidate
genes it may be preferable (and more
cost-effective) to move to straight to
whole exome next generation
sequencing (NGS), whilst accepting
the considerable bioinformatics
challenges inherent to whole exome
sequence analysis. See figure 2A for
candidate genes associated with
neurological, metabolic or cardiac
presentations of isolated complex I
deficiency. mtDNA, mitochondrial
DNA. NB nota bene.
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reports have demonstrated that riboflavin responsiveness in
nuclear-encoded complex I deficiency is related to ACAD9 defi-
ciency. ACAD9 is a flavoprotein-containing enzyme which was
initially implicated in long chain fatty acid oxidation103 but
now appears to have a more convincing role in complex I
assembly.45 53 67 Increased flavin adenine dinucleotide availabil-
ity as a result of riboflavin supplementation is thought to sta-
bilise mutant flavoproteins and thereby increase their
activity.104 Riboflavin supplementation was shown to increase
complex I activity approximately twofold in cultured fibro-
blasts bearing ACAD9 mutations,53 and residual muscle
complex I activity also increased from 16% to 47% in a repeat
biopsy taken 2 years after riboflavin therapy was commenced
in one man.105 Riboflavin treatment (at doses ranging from
50 mg/day in a neonate to 100–300 mg/day in adults) has been
documented for five patients with ACAD9 mutations, and
symptomatic improvement was reported in all cases, who were
alive aged 5–24 years at the time of the reports.53 67 105

However, six patients with ACAD9 mutations reported in the
literature died, between the ages of <1 month and
12 years.45 53 74 It is not clear from the reports whether any of
these children received riboflavin.

Although a therapeutic trial of riboflavin should be manda-
tory for all patients with complex I deficiency, most patients
are unlikely to respond. There is a clear need for other treat-
ment strategies. The most promising approaches involve anti-
oxidant compounds or target mitochondrial biogenesis. The
role of the antioxidant vitamin E and its analogues such as
Trolox in complex I deficiency was the subject of a recent
review.106 Analogues of another antioxidant, coenzyme Q10,
have shown promise in arresting disease progression in LHON
if given early.107 108 Mitochondrial biogenesis may be stimu-
lated via various pharmacological agents, which all appear to
act via the common pathway of stimulating the PGC1α trans-
lational coactivator.109 Bezafibrate and AICAR (5-amino-1-β-D-
ribofuranosyl-imidazole-4-carboxamide), which both stimulate
PGC1α, were recently shown to improve various measures of
mitochondrial function in cultured skin fibroblasts from
patients with nuclear-encoded complex I deficiency.110 The
ketogenic diet has also been proposed to increase mitochondrial
biogenesis,111 and there are anecdotal reports of benefit from a
ketogenic diet in occasional patients with complex I deficiency;
for example, temporary improvement of ptosis and ophthalmo-
plegia in a child with NDUFV1 mutations.112 However, other
reports have suggested that increasing dietary fat does not
improve complex I deficiency.113 Finally, two recent reports of
successful gene therapy in rat models of LHON offer hope for
patients with this subgroup of complex I deficiency.114 115

While the above strategies all show promise, most have not
yet reached the stage of preclinical trials, and much work
remains to be done in devising effective therapies for complex I
deficiency. However, although developing new more effective
treatments is undoubtedly important, we must not lose sight
of the fact that there is an urgent need for well designed and
adequately powered clinical trials of the most promising agents
sooner rather than later.

CONCLUSIONS
Complex I deficiency is a common cause of childhood-onset
mitochondrial disease, but the associated clinical and genetic
heterogeneity leads to considerable diagnostic challenges.
Recent advances in genetic techniques, particularly the avail-
ability of relatively inexpensive high-throughput whole exome
next generation sequence analysis, have led to the identification

of the causative gene in large numbers of patients in the last
2 years. This has allowed some tentative genotype to pheno-
type correlations to be made. For example, patients with
ACAD9 mutations typically have HCM and/or exercise intoler-
ance, while those with NDUFAF2 defects have a subtype of
Leigh syndrome with a highly specific neuroimaging appear-
ance. These emerging genotype to phenotype correlations are
important, since they will allow the diagnostic process to be
more rapid, which is crucial for affected families seeking
genetic counselling and prenatal diagnosis. However, some phe-
notypes, notably Leigh syndrome, are characterised by extreme
genetic heterogeneity, and the numbers of reported patients
with mutations in many of the causative genes are too small to
allow genotype to phenotype comparisons to be made. An
ongoing challenge is that a molecular diagnosis remains elusive
for approximately 50% of patients with complex I deficiency,
despite high-throughput sequencing.9 74 There are several pos-
sible explanations for this: determining which of the many var-
iants identified by exome sequencing is pathogenic is a huge
bioinformatic task; mutations may lie in introns or untrans-
lated regulatory regions, and the assumed inheritance pattern
may not be correct (eg, some patients may have de novo domin-
ant mutations, rather than recessive mutations as is usually
assumed for severe early-onset mitochondrial diseases in which
mtDNA mutations have been excluded). Finally, identification
of complex I deficiency should prompt initiation of riboflavin
treatment since some patients, particularly those with ACAD9
mutations, may respond to supplementation with this vitamin.
However, effective treatments are still lacking for the majority
of patients with this devastating group of disorders. The recent
development of several mouse models will be invaluable for
preclinical trials of candidate therapies, but much work
remains to be done.
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ABSTRACT
Complex I deficiency is the most frequent mitochondrial
disorder presenting in childhood, accounting for up to
30% of cases. As with many mitochondrial disorders,
complex I deficiency is characterised by marked clinical
and genetic heterogeneity, leading to considerable
diagnostic challenges for the clinician, not least because
of the involvement of two genomes. The most prevalent
clinical presentations include Leigh syndrome,
leukoencephalopathy and other early-onset
neurodegenerative disorders; fatal infantile lactic acidosis;
hypertrophic cardiomyopathy; and exercise intolerance.
Causative genetic defects may involve the seven
mitochondrial-encoded or 38 nuclear-encoded subunits of
the enzyme, or any of an increasing number of assembly
factors implicated in the correct biosynthesis of complex
I within the inner mitochondrial membrane. In this review,
we discuss recent advances in knowledge of the
structure, function and assembly of complex I and how
these advances, together with new high-throughput
genetic screening techniques, have translated into
improved genetic diagnosis for affected patients and their
families. Approximately 25% of cases have mitochondrial
DNA mutations, while a further ∼25% have mutations in
a nuclear subunit or in one of nine known assembly
factors. We also present a systematic review of all
published cases of nuclear-encoded complex I deficiency,
including 117 cases with nuclear subunit mutations and
55 with assembly factor mutations, and highlight clinical,
radiological and biochemical clues that may expedite
genetic diagnosis.

INTRODUCTION
Complex I (nicotinamide adenine dinucleotide
(NADH):ubiquinone oxidoreductase, Enzyme
Commission number EC 1.6.5.3) is the first and
largest enzyme of the mitochondrial respiratory
chain (RC) and oxidative phosphorylation
(OXPHOS) system, and plays critical roles in trans-
ferring electrons from reduced NADH to coenzyme
Q10 (CoQ10, ubiquinone) and in pumping protons
to maintain the electrochemical gradient across the
inner mitochondrial membrane. This electrochem-
ical gradient, generated by complexes I, III and IV, is
subsequently harnessed by complex V (ATP syn-
thase) to synthesise ATP from ADP and inorganic
phosphate. Complex I is also the major site for the
generation of reactive oxygen species (ROS), which
are increasingly recognised to be important signal-
ling molecules determining the health and fate of
the mitochondrion and of the whole cell.
Isolated deficiency of complex I is the most com-

monly identified biochemical defect in childhood-

onset mitochondrial disease, accounting for
approximately a third of all cases of OXPHOS disor-
ders.1 Complex I deficiency is clinically heteroge-
neous but the majority of affected individuals
develop symptoms during the first year of life
and have a rapidly progressive disease course, result-
ing in a fatal outcome in childhood. However, clin-
ical presentations may vary, ranging from fatal
neonatal lactic acidosis to infantile-onset Leigh syn-
drome, childhood-onset mitochondrial encephalo-
myopathy, lactic acidosis and stroke-like episodes
(MELAS) syndrome and, in some cases, adult-onset
encephalomyopathic syndromes of variable sever-
ity. Presentation with single organ involvement is
also recognised, for example, isolated hypertrophic
cardiomyopathy (HCM) or Leber ’s hereditary optic
neuropathy (LHON).
Inherited complex I deficiency can result from

mutations in either mitochondrial DNA (mtDNA)
or nuclear-encoded structural subunits of the
enzyme or from mutation of any of a rapidly
expanding number of nuclear-encoded complex I
assembly factors. To date, genetic defects have been
reported for all seven mtDNA-encoded complex I
subunits, 17 of the 38 nuclear-encoded subunits and
nine assembly factors. Pathogenic mtDNA muta-
tions may be maternally inherited or sporadic, while
most nuclear-encoded complex I defects are inherited
as autosomal recessive traits, although a small
number of X-linked defects have been reported.
In this review, we discuss the structure, function

and assembly of the enzyme; report the findings of
a systematic review of the clinical features of 172
published patients with nuclear-encoded complex I
defects, including clinical and radiological clues
that may aid genetic diagnosis; and consider
potential approaches to developing treatments for
these devastating disorders.

STRUCTURE AND FUNCTION OF COMPLEX I
The L-shaped structure of complex I was initially
revealed by electron microscopy; further detail was
subsequently provided by x-ray crystallography
studies of the enzyme in the bacterium Thermus
thermophilus and the fungus Yarrowia lipolytica,
which demonstrated the relative positions of the
subunits in these organisms.2–4 Efforts are under-
way to determine the positions of the subunits in
the mammalian enzyme by crystallising purified
complex I from bovine heart. Human complex I is
very similar to bovine complex I and consists of 45
different subunits (figure 1A),5 14 of which are
necessary for catalytic function and are conserved
in all species that have a complex I including
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bacteria.6 Seven of these ‘core’ subunits are hydrophobic and
encoded by mtDNA (ND1, ND2, ND3, ND4, ND4L, ND5 and
ND6), whereas the other seven are hydrophilic and encoded by
nuclear DNA (NDUFV1, NDUFV2, NDUFS1, NDUFS2,
NDUFS3, NDUFS7 and NDUFS8). These 14 subunits have
been defined as the ‘minimal enzyme’, while the remaining
subunits are often referred to as ‘supernumerary ’ or ‘accessory ’.
The minimal enzyme includes the core subunits of complex I
considered essential for catalysing electron transfer from
NADH to CoQ10 and generating the proton motive force, as
well as the substrate binding sites and all the known redox
centres of the enzyme.

Complex I has three functional modules: the electron input
or N module and the electron output or Q module, both
located in the peripheral arm which protrudes into the mito-
chondrial matrix, and the proton translocase P module within
the membrane arm. All seven nuclear-encoded core subunits
are located within the N and Q modules, while the seven
mtDNA-encoded core subunits are in the P module. Electrons
from NADH, which is oxidised at the matrix-protruding end
of the peripheral arm, are passed to flavin mononucleotide
(FMN), which is non-covalently bound to the NDUFV1
subunit, then via a chain of iron–sulphur (Fe–S) clusters to
CoQ10, which is reduced near the junction of the peripheral
arm with the membrane arm. The energy generated by the
series of electron transfer reactions within the peripheral arm is

transduced, by conformational changes in the membrane arm,
to pump four protons into the intermembrane space.4 These
four protons contribute ∼40% of the electrochemical gradient
that drives ATP synthesis.4 The function of the 31 nuclear-
encoded supernumerary subunits is still poorly understood, but
putative functions include: supporting the structural stability
of the enzyme by forming a ‘scaffold’ around the core subunits;
protecting the core subunits against oxidative stress; participat-
ing in complex I assembly; and regulating the activity of the
enzyme.

COMPLEX I ASSEMBLY
In addition to the structural components of complex I, there
are a number of known and putative assembly factors, which
chaperone the 45 subunit proteins, one FMN moiety and eight
Fe–S clusters through the intricate process of assembling the
final ∼980 kDa holoenzyme.7 To date, nine such assembly
factors have been linked to human disease (NDUFAF1,
NDUFAF2, NDUFAF3, NDUFAF4, C20ORF7, C8ORF38,
nucleotide-binding protein-like (NUBPL), FOXRED1 and
ACAD9). It is likely that many more complex I assembly
factors will be identified considering that the much smaller
complex IV, which has only 13 subunits, requires more than 15
assembly factors for its assembly.8 In support of this, phylogen-
etic profiling studies have identified 25 putative complex I
assembly factors.9

Figure 1 Structure and assembly of human mitochondrial respiratory chain complex I. (A) Structure of complex I, showing the 45 subunits
(seven encoded by mitochondrial DNA and 38 by nuclear genes), colour-coded according to the clinical phenotype(s) associated with mutations of
these genes (see key at the right of figure). Subunits in grey have not yet been linked to human disease. The three functional modules of the enzyme
(N electron accepting, Q ubiquinone reducing and P proton pumping) are shown. The oxidation of nicotinamide adenine dinucleotide by flavin
mononucleotide generates a flow of electrons that are transported by the Fe–S clusters contained in the subunits NDUFV1-V2-S1-S8 and S7 to
ubiquinone, which is consequently reduced to ubiquinol. The energy generated by the electron flow produces a conformational change within the
holocomplex which allows for the pumping of four protons (H+) towards the intermembrane space. (B) Assembly pathway of complex I. The main
subassemblies (numbered according to the scheme proposed by McKenzie and Ryan7) and the proposed sites of action of the nine assembly factors
so far linked to human disease are indicated. Subunits and assembly factors are colour-coded according to the associated phenotype, as shown in
the key at the top right.
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Complex I assembly has been studied in various model
systems: the fungus Neurospora crassa, mouse cell lines lacking
mtDNA-encoded subunits; pulse-chase experiments in human
cell lines in which mitochondrial protein synthesis is temporar-
ily blocked by cycloheximide and then allowed to recommence;
and in vitro mitochondrial import assays of tagged nuclear-
encoded complex I subunits. However, by far the most infor-
mation about human complex I assembly has come from
studies of fibroblasts from patients with mutations in complex
I subunits and assembly factors. This has been the subject of
intense research interest, which has allowed the identification
of at least seven complex I assembly intermediates.7 10 So far,
precise roles have been elucidated for only a few of the known
complex I assembly factors. C20ORF7, C8ORF38, NDUFAF3
and NDUFAF4 have all been implicated early in the complex I
assembly process, while NDUFAF1, evolutionary conserved sig-
nalling intermediate in Toll pathways (ECSIT) and ACAD9
appear to be involved at an intermediate stage and NDUFAF2
in the late stages.11 Possible functions of the various putative
complex I assembly factors/chaperones include assembly of
Fe–S clusters, translational coactivation of complex I subunits
and direction of nuclear-encoded complex I subunits to the
correct intramitochondrial compartment (ie, to the matrix side
of the enzyme or to the intermembrane space).7

The first step of complex I assembly is thought to involve
incorporation of newly translated mtDNA-encoded subunits
into early membrane arm assembly intermediates.10 This step
is chaperoned by C20ORF7 which, together with C8ORF38,
may function as a translational activator of ND1.12

Alternatively, C20ORF7 may insert ND1 into the membrane or
facilitate ND1 into an early membrane arm intermediate.
C20ORF7 contains a predicted S-adenosyl methionine-
dependent fold, suggesting that it may methylate proteins,
RNA or DNA within mitochondria.13 14 Only two complex I
subunits are known to be methylated:15 NDUFS2 (methylated
arginine R323) and NDUFB3 (contains two or three highly
conserved methylated histidines).16 Like ND1, NDUFB3 is
located in the membrane arm, suggesting that post-
translational methylation may play a role in the assembly or
stability of the membrane arm. Recently, C20ORF7 mutations
were linked to combined deficiency of complexes I and IV,17

and knockdown of C20ORF7 expression in control cells using
lentiviral-mediated RNAi18 also led to decreased complex IV
activity, suggesting that C20ORF7 may be necessary for assem-
bly of RC supercomplexes.17 18

The formation of the peripheral matrix arm begins with the
assembly of four core subunits: NDUFS7 and NDUFS8 (inter-
mediate 1), followed by NDUFS3 and NDUFS2 (intermediate 2),
to form intermediate 3a (numbering based on nomenclature of
McKenzie and Ryan;7 see figure 1B). The assembly factors
NDUFAF3 (C3ORF60) and NDUFAF4 (C6ORF66), mutations
of which cause fatal neonatal-onset complex I deficiency,19 20

tightly associate with intermediate 3a, and it has been sug-
gested that NDUFAF3 and NDUFAF4 may be involved in
membrane anchoring of intermediate 2 and promoting matur-
ation to intermediate 3a, which also includes the NDUFA9
subunit (figure 1B). Both NDUFAF3 and NDUFAF4 remain
associated with intermediates 4a (∼400 kDa), 5a (∼650 kDa)
and 6a (∼830 kDa) as complex I assembly proceeds, but are dis-
sociated just before the formation of the mature holocomplex
(figure 1B).19

NDUFAF1 (CIA30) and ECSIT mediate the next step in
complex I assembly: the joining of intermediate 4a (a

∼400 kDa subcomplex containing at least NDUFS2, NDUFS3,
NDUFS7, NDUFS8 and ND1) with a second membrane arm
intermediate 4b of ∼460 kDa (containing at least ND2, ND3
and ND6).10 Pathogenic NDUFAF1 mutations resulted in iso-
lated complex I deficiency and cardiomyopathy in two patients,
associated with stalling of complex I assembly at the ∼400 kDa
and ∼460 kDa intermediates.21 22 No mutations have been
identified in ECSIT to date, but mutations in another factor,
ACAD9, which also associates with NDUFAF1 and ECSIT,
appear to be a relatively common cause of complex I deficiency
presenting as HCM and/or exercise intolerance.

As complex I assembly proceeds, NDUFA13 is added to the
∼400 and ∼460 kDa membrane arm intermediates to form
intermediate 5a.23 Subunits ND4 and ND5 are then assembled
into the growing complex, possibly together with other subu-
nits in the small membrane arm intermediate 5b.24 The result-
ing ∼830 kDa intermediate 6a remains associated with
NDUFAF1 and has been shown by co-immunoprecipitation to
contain ND1, ND2, ND3, ND6, NDUFB6, NDUFA9, NDUFS3
and NDUFS7 (but not NDUFS5 or NDUFA8).21 NDUFA1,
NDUFA2, NDUFA6,23 NDUFB8 and NDUFA1010 also appear
to be assembled into intermediate 6a at this stage. The assem-
bly factor NDUFAF2, mutations of which cause progressive
encephalopathy, associates with the ∼830 kDa complex and
mediates a late step in the complex I assembly process.25

The last step for completion of fully assembled complex I is
insertion of the ∼300 kDa N module (intermediate 6b), which
provides the entry point for electrons into the complex.26 In
vitro import studies demonstrated the N module to contain at
least NDUFS1, NDUFV1, NDUFV2, NDUFV3, NDUFS4,
NDUFS6, NDUFA12 and FMN (which is non-covalently
bound to NDUFV1).10 Once holocomplex I assembly is com-
plete, the assembly factors NDUFAF1, ECSIT, NDUFAF2,
NDUFAF3 and NDUFAF4 dissociate from the mature holoen-
zyme. The electron transfer activity of complex I also requires
the incorporation of eight Fe–S clusters. This step is most likely
carried out by at least one assembly factor: HuIND1 (Fe–S
protein required for NADH dehydrogenase), also known as
NUBPL. NUBPL is a mitochondrial protein which binds Fe–S
clusters via a conserved CxxC motif27 and incorporates these
into various subunits of the enzyme within intermediates 1
(NDUFS7 and NDUFS8) and 6b (NDUFS1 and NDUFV1).27 28

The observation that newly synthesised subunits can be
interchanged with pre-existing counterparts within mature
complex I suggests that complex I assembly does not always
proceed via the linear model described above, but that a
subunit exchange mechanism may also be employed to repair
damaged enzyme and maintain complex I homeostasis.24 It
should be emphasised that the precise mechanism of complex I
assembly is still debated, and may be modified as new complex
I assembly factors are discovered. A further level of complexity
is that it is likely that the majority of complex I exists within
RC supercomplexes or ‘respirasomes’ (composed of at least
complex I+complex III+complex IV in various stoichiometric
ratios).29 Supercomplexes are thought to provide structural and
functional advantages to the individual RC enzymes, including
stabilisation, protection from degradation, increased efficiency
of electron transport and substrate channelling, and decreased
electron and proton leakage.30 It has been further suggested
that complex I assembly may only occur in the context of the
respirasome.31 The existence of supercomplexes may explain
the defects of other RC complexes sometimes associated with
complex I mutations; for example, complex III defects in some

580 J Med Genet 2012;49:578–590. doi:10.1136/jmedgenet-2012-101159

Mitochondrial genetics



patients with NDUFS4 subunit mutations32 33 and complex IV
deficiency in occasional patients with defects in the complex I
assembly factor C20ORF7.17

COMPLEX I DEFICIENCY: CLINICAL PHENOTYPES
Clinical presentation of complex I deficiency is extremely het-
erogeneous, and ranges from neonatal-onset lactic acidosis to
Leigh syndrome and other encephalomyopathies, as well as
multisystem disease involvement, and single organ presenta-
tions, for example, with HCM or isolated optic neuropathy.
The more commonly recognised phenotypes are described
below, together with the responsible genes.

Fatal infantile lactic acidosis
The earliest presentation of complex I deficiency is with con-
genital lactic acidosis, which may present in the neonatal
period or early infancy. This disorder is typically rapidly pro-
gressive, resulting in death in infancy, and has been linked to
mutations in several nuclear-encoded complex I subunits
(NDUFV1, NDUFS2, NDUFS6, NDUFS8, NDUFA11 and
NDUFB3) and assembly factors (NDUFAF3 and C20ORF7)
(see online supplementary table S1). Few mutations have been
reported in several of these genes, and so it is difficult to
predict whether fatal infantile lactic acidosis (FILA) will be the
characteristic clinical presentation for these genetic defects or
merely reflects a severe complex I deficiency. An exception
seems to apply in the case of NDUFS6 mutations, since these
caused FILA in seven children from four unrelated families.34 35

Leigh syndrome
The most frequent presentation of complex I deficiency is
Leigh syndrome, or subacute necrotising encephalomyelopathy.
Affected children typically have normal early development but
present in late infancy or early childhood with progressive
neurological abnormalities related to brainstem and/or basal
ganglia dysfunction. Clinical signs include respiratory abnor-
malities, nystagmus, ataxia, dystonia and hypotonia. Stepwise
neurodevelopmental regression may follow intercurrent ill-
nesses. Often there may be some initial recovery, but never
back to the baseline neurodevelopmental trajectory. Leigh syn-
drome was originally defined neuropathologically (bilateral
symmetrical necrotic lesions characterised by the histological
quadrad of spongiosis, neuronal loss, astrocytosis and capillary
proliferation)36 but now can be diagnosed in life on the basis of
the clinical features, elevated lactate levels in blood and/or cere-
brospinal fluid and characteristic appearances on MRI of the
brain (bilateral symmetrical hyperintensities in the basal
ganglia and/or brainstem in T2 weighted sequences).37 Leigh
syndrome results from severely impaired cerebral mitochondrial
energy production, and is biochemically and genetically
extremely heterogeneous. Although any OXPHOS defect may
cause Leigh syndrome, isolated complex I deficiency is the most
frequently observed biochemical abnormality, accounting for
34% of cases.37 Mutations in six mtDNA-encoded (ND1, ND2,
ND3, ND4, ND5 and ND6) and 11 nuclear-encoded (NDUFS1,
2, 3, 4, 7, 8, NDUFV1, NDUFA1, 2, 9, 10) complex I subunits
and four assembly factors (NDUFAF2, C8ORF38, C20ORF7
and FOXRED1) have been linked to Leigh syndrome to date
(see online supplementary table S1 for details and relevant
references).

Leukoencephalopathy
Other patients with infantile-onset complex I deficient ence-
phalomyopathy have a leukodystrophy characterised by cystic

white matter changes in the brain MRI. Clinical features in
these children include progressive myoclonic epilepsy, episodes
of vomiting, global developmental delay and regression, spasti-
city, dystonia, cerebellar ataxia, ptosis, ophthalmoplegia, nys-
tagmus and optic atrophy. There may be associated
macrocephaly. This phenotype has been particularly linked to
mutations of two nuclear-encoded complex I subunits,
NDUFV1 and NDUFS1, with five and 16 reported cases,
respectively (see online supplementary table S1).
Neuroradiological appearances in these patients can be con-
fused with vanishing white matter disease.25 38–40 A single
patient with NDUFS8 mutations also presented with leukoen-
cephalopathy, as did occasional patients with mutations in the
NDUFAF4 and NUBPL assembly factors (see online supplemen-
tary table S1).

Mitochondrial encephalomyopathy, lactic acidosis and
stroke-like episodes
Patients with MELAS syndrome usually have symptom-onset
in childhood, with seizures, migraines, vomiting, exercise
intolerance, proximal limb weakness and short stature. The
first stroke-like episode (characterised by transient hemiparesis
and/or hemianopsia, often preceded by focal seizures) typically
occurs in the first decade of life. Isolated complex I deficiency
may be seen in MELAS syndrome, particularly in individuals
with ND subunit mutations.41 However, ∼80% of cases are
caused by a common mitochondrial transfer RNA (tRNA)
mutation m.3243A>G which may also be associated with mul-
tiple RC defects. Strokes do not seem to be particularly asso-
ciated with nuclear-encoded complex I deficiencies, although
stroke-like episodes were reported in two Dutch patients with
ACAD9 mutations, which are more usually associated with
exercise intolerance and/or cardiomyopathy.42

Cardiomyopathy
Complex I deficiency may present in infancy with isolated
HCM, sometimes with non-compaction of the left ventricular
wall.22 Isolated HCM has been reported with mutations in
nuclear-encoded subunits (NDUFS2 and NDUFV240 43 44) and
assembly factors (most commonly ACAD9, usually with asso-
ciated exercise intolerance,45 but also NDUFAF122). Affected
infants may succumb to FILA46 or there may be associated pro-
gressive encephalopathy, usually in the Leigh syndrome spec-
trum, as has been reported for mutations in several genes:
NDUFS2, NDUFS4, NDUFS8, NDUFA2, NDUFA10, NDUFA11
and ACAD9 (see online supplementary table S1 for details). It
is possible that cardiomyopathy is under-recognised in complex
I deficiency, since detailed cardiac investigations may not be
performed in some patients with severe neurological presenta-
tions. Conduction defects such as Wolff–Parkinson–White syn-
drome have been reported in patients with both mtDNA (eg,
m.13513G>A) and nuclear-encoded (eg, NDUFAF1) complex I
defects.21 47

BIOCHEMICAL ASSESSMENT OF COMPLEX I
In most centres complex I deficiency is diagnosed by spectro-
photometric assay of rotenone-sensitive NADH: ubiquinone
oxidoreductase activity in biopsied tissue (usually skeletal
muscle, but another affected tissue such as cardiac muscle or
liver may be biopsied). Spectrophotometric assays may also be
performed in cultured skin fibroblasts from patients, but this
is not an ideal tissue for investigation since many patients
(particularly those with mtDNA mutations, but also some
nuclear-encoded defects) do not express complex I deficiency in
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fibroblasts. In most specialist centres, fibroblasts are assayed as
a second-line investigation in order to determine whether there
is a systemic complex I deficiency or a tissue-specific defect.
Rotenone is used in the assay because there are many NADH
oxidoreductases in the cell, but only complex I is rotenone-
sensitive; residual NADH oxidoreductase activity after rotenone
administration is subtracted from total NADH oxidoreductase
activity in order to derive complex I activity. The activity of
complex I is usually expressed as a ratio to a mitochondrial
matrix enzyme (most commonly one of the Krebs cycle
enzymes, such as citrate synthase or succinate dehydrogenase)
to control for varying mitochondrial content between samples.

The biochemical diagnosis of complex I deficiency is not
trivial and consequently there are no universally accepted diag-
nostic criteria. Measurement methods and reference ranges vary
between laboratories: some centres use values <30% of the
control mean; others use anything below the control range;
and quality assurance schemes are still in their infancy.48

Isolated complex I deficiency refers to a severe reduction of
complex I, with activities of other OXPHOS complexes within
(or close to) the reference range.1 A potential caveat is that the
spectrophotometric NADH to ubiquinone oxidoreductase assay
is only a measure of redox activity within the peripheral arm.
Mutations of membrane arm subunits, which affect proton
pumping rather than electron transfer, may theoretically result
in apparently ‘normal’ enzyme activity. Therefore, normal
complex I enzyme activity does not completely exclude the
possibility of complex I deficiency, as has been demonstrated
for patients with mutations in the peripherally located ND5
subunit.41 More recently mini-oxygraphy methods have been
developed; while these do not give a specific measurement of
complex I activity, they do allow assessment of the global
oxygen consumption capacity of isolated mitochondria or
intact cells.49 50 In addition, immunocapture-based methods
have been used to interrogate the function of complex I.22 51

The presence of individual complex I subunits may be deter-
mined by western blot analysis, and the technique of blue
native gel electrophoresis (BNGE) is proving to be a powerful
method for studying the assembly of the complex I holoen-
zyme and dissecting specific complex I assembly defects.10

GENETICS OF COMPLEX I DEFICIENCY
Complex I deficiency is genetically extremely heterogeneous
and several patterns of inheritance have been observed, includ-
ing maternal, autosomal recessive and X-linked. This genetic
complexity, superimposed on the clinical heterogeneity dis-
cussed above, leads to considerable difficulties in establishing
genetic diagnoses for patients with complex I deficiency.
Complex I disease genes have been identified by candidate gene
analysis (NDUFAF1,21 NDUFAF2,25 C8ORF389); genetic
linkage and homozygosity mapping approaches (NDUFAF3,19

NDUFAF4,20 C20ORF7,18 FOXRED151); and more recently by
targeted or whole exome sequencing using next generation
sequencing (NGS) techniques (NUBPL,52 ACAD953).

mtDNA mutations
Maternally inherited mutations in mtDNA-encoded complex I
subunits (ND subunits) were initially linked to LHON almost
25 years ago.54 Mutations associated with LHON are homo-
plasmic. Subsequently, heteroplasmic mutations in ND subu-
nits were reported in association with other clinical
phenotypes, such as dystonia, MELAS and Leigh syndrome.
Several recurrent mutations are recognised,55–58 and the ND5
subunit appears to be a particular hotspot for disease-causing

mutations.41 Many patients have features overlapping different
mitochondrial syndromes, for example some patients have
LHON plus dystonia and other patients may have features
overlapping MELAS, LHON and Leigh syndrome.41 A complete
list of the mtDNA mutations associated with complex I defi-
ciency can be found in the online Mitomap database (http://
www.mitomap.org/MITOMAP). Mutation pathogenicity can
be especially difficult to prove for mtDNA mutations since
mtDNA is extremely polymorphic and many mutations are
‘private’ to individual families. Factors supporting pathogen-
icity include heteroplasmy, segregation with disease within a
family, association with a similar disease phenotype in multiple
unrelated families and (the gold standard, but only possible in
cases where the biochemical defect is expressed in cultured
cells) demonstration of transfer of the biochemical phenotype
with the mtDNA mutation in transmitochondrial cybrids.
Mutation pathogenicity scoring criteria can also be helpful.59 It
should be noted that many mtDNA mutations are sporadic
and so the absence of a family history suggestive of maternal
inheritance does not exclude the possibility of a mtDNA muta-
tion. Studies of several cohorts of patients with complex I defi-
ciency from around the world have suggested a fairly uniform
prevalence of causative mtDNA mutations of ∼20%–

30%.58 60 61 These studies indicate that sequencing mtDNA is a
useful first-line genetic screening strategy in complex I defi-
ciency, since it will be possible to make a genetic diagnosis in a
significant minority; however, most cases will have a nuclear
defect.

Nuclear subunit mutations
So far, mutations in 17 of the 38 nuclear-encoded complex I
subunits have been reported to cause complex I deficiency,
including all seven nuclear-encoded core subunits and 10 of the
supernumerary subunits (see online supplementary table S1).
The first nuclear subunit mutations were identified by system-
atically sequencing core subunit genes in a relatively large
cohort of patients,62–65 and subsequently other mutations were
identified by homozygosity mapping approaches in consan-
guineous families.18 35 To date, more than 100 affected patients
have been reported: ∼60% with core subunit mutations and
∼40% with mutations in accessory subunits (see online supple-
mentary table S1). The most frequently observed phenotypes
were Leigh syndrome, leukoencephalopathy and HCM (see
online supplementary table S1; figure 1A and figure 2A). Most
mutations were reported for NDUFS1 (24 cases) and NDUFS4
(21 cases), but mutations of NDUFV1 and NDUFS2 also
occurred relatively frequently (14 and 12 cases, respectively). It
is not yet known whether the preponderance of core subunit
mutations reflects ascertainment bias (these subunits are more
likely to be included in targeted candidate gene screening pro-
jects) or whether core subunit mutations are more likely to
have functional consequences and that mild mutations in
accessory subunits can be tolerated without causing clinical
disease. Large-scale exome sequencing projects, which are not
subject to ascertainment bias, should help to answer this
question.

Assembly factor mutations
Nine nuclear-encoded complex I assembly factors have now
been linked to human disease, with mutations reported in 55
patients from 32 families so far (see online supplementary
table S1). The first complex I assembly defect was found using
a ‘genome subtraction’ method, in which genes that were
present in fungi with complex I but absent in fungal species
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without complex I were identified as putative complex I assem-
bly factors. This approach led to the discovery of B17.2L (now
renamed NDUFAF2) mutations in a patient with progressive
encephalopathy.25 Eight further patients with NDUFAF2 muta-
tions have since been reported (see online supplementary table
S1), all with similar clinical features and a characteristic neuro-
imaging appearance (see below). Mutations in NDUFAF1 were
linked to HCM in two unrelated patients by BNGE profiling
and candidate gene sequence analysis,21 22 while homozygosity
mapping revealed NDUFAF3 and NDUFAF4 to be complex I
assembly factors associated with FILA or severe infantile-
onset encephalopathies (see online supplementary table S1).
Phylogenetic profiling identified C8ORF38, C20ORF7 and
FOXRED1 as candidate complex I assembly factors, and these
were all subsequently linked to human disease using homozy-
gosity mapping.9 18 51 Finally, mutations in NUBPL were iden-
tified using a targeted next generation sequencing approach,52

while mutations in ACAD9 (previously thought to be involved
in fatty acid oxidation) were discovered to cause complex I defi-
ciency associated with HCM and/or exercise intolerance in a
whole exome sequencing project.53

Other genetic causes of complex I deficiency
Because complex I contains the largest number of mtDNA-
encoded subunits, isolated complex I deficiency may be the
initial biochemical defect in disorders of mtDNA replication
and translation, although later in the course of these disorders
there are usually multiple RC defects. The most frequent cause
of defective mtDNA replication is mutation of the POLG gene

encoding the catalytic subunit of DNA polymerase γ, and occa-
sional patients with POLG mutations do present with isolated
complex I deficiency. The most frequently diagnosed mtDNA
translation defects affect the mitochondrial tRNA molecules,
either as point mutations involving a single tRNA or large-scale
rearrangements which may delete several tRNA genes. More
recently, nuclear-encoded defects of mitochondrial translation
have been linked to isolated complex I deficiency; for example,
mutations in the MTFMT gene encoding the mitochondrial
methionyl-tRNA formyltransferase.66

APPROACHES TO DIAGNOSIS
From a clinical viewpoint, the important questions in complex I
deficiency are whether there are characteristic clinical features
of complex I deficiency; whether any particular clinical features
should arouse suspicion of specific gene defects; and finally
whether specific gene defects are associated with a better or
worse prognosis. Traditionally, it has been very difficult to iden-
tify genotype to phenotype correlations for mitochondrial dis-
orders, including complex I deficiency, because of the extreme
genetic heterogeneity underlying these diseases. Furthermore,
even the most specialised centres will only see small numbers
of patients with particular genetic defects, and so it is difficult
for physicians to identify clinical clues that may point to spe-
cific diagnoses. A further source of bias is the referral pattern
for individual clinicians; for example, different subgroups of
patients are likely to be referred to neurologists compared with
metabolic physicians or biochemical geneticists.

Figure 2 Genotype to phenotype correlations in nuclear-encoded complex I deficiency. (A) Venn diagram illustrating genotype to phenotype
correlations between mutations in nuclear-encoded complex I subunits and assembly factors and the main clinical phenotypes (neurological,
metabolic, cardiac and exercise intolerance). Note the considerable genetic heterogeneity for each clinical subgroup, and that several genetic defects
are associated with more than one phenotype. (B) Kaplan–Meier survival curves for nuclear-encoded complex I deficiency, according to age of
disease onset. All survival functions were calculated using SPSS V.20. (C) Pie chart illustrating the relative prevalence of the main clinical
phenotypes of nuclear-encoded complex I deficiency. (D) Kaplan–Meier survival curves for nuclear-encoded complex I deficiency, according to
clinical phenotype. (E) Kaplan–Meier survival curves for defects in nuclear-encoded complex I subunits, compared with assembly factor defects.
(F) Blood and cerebrospinal fluid lactate concentrations (mM) reported in patients with mutations in nuclear-encoded subunits (red) and assembly
factors (blue) of complex I. Normal lactate concentration is <2 mM.
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We sought to address these difficulties by performing a sys-
tematic review of all cases of genetically confirmed nuclear-
encoded complex I deficiency in order to search for genotype to
phenotype correlations and identify clinical, radiological or bio-
chemical patterns that may help to expedite genetic diagnosis
for affected individuals. Extensive literature searches of the
PubMed database were performed by both authors, using the
key words complex I deficiency, and names and aliases of all
the nuclear-encoded complex I subunits and known assembly
factors in order to obtain as near complete an ascertainment as
possible of all cases published in the 14-year period, February
1998–April 2012 inclusive. All cases of genetically confirmed
complex I deficiency with nuclear mutations were included in
the review. Cases where only one mutation had been identified
were excluded, with the exception of five hemizygous males
and a single heterozygous female with mutations in the
X-linked NDUFA1 gene. Other exclusion criteria were apparent
duplicate reports and cases where a mutation was reported but
no clinical information was supplied. In all, 65 papers were
included in the review, reporting a total of 172 patients: 117
with nuclear subunit mutations and 55 with assembly factor
mutations. A full list of the publications included in our
meta-analysis is given in the online supplementary material.

Genotype to phenotype correlations
The overall male to female ratio observed was 1.4 : 1 but when
this was broken down according to subtype of genetic defect,
the proportion was 1.7 : 1 for nuclear subunit mutations and
1 : 1 for assembly factor mutations. The reason for the male
preponderance with nuclear subunit mutations is not clear,
since only a handful of cases had mutations in the X-linked
NDUFA1 gene. Approximately 30% of cases had symptom-
onset in the neonatal period or infancy and a further ∼60% in
early childhood, meaning that the overwhelming majority of
cases with nuclear-encoded complex I defects present before
5 years of age. The distribution of age of onset was roughly the
same for subgroups with nuclear subunit mutations and assem-
bly factor defects (data not shown). In general, survival and
rates of disease progression are broadly related to age at onset
(figure 2B). The largest subgroup of patients presented with
early-onset neurodegenerative disease with symptoms/signs
compatible with the Leigh syndrome spectrum (39% of cases).
These patients had mutations in 21 different genes, so it is dif-
ficult to deduce genotype to phenotype correlations for
complex I deficiency with Leigh syndrome/Leigh-like features
(see online supplementary table S1; figure 1). Other patients
presented with a leukoencephalopathy (14%), an unspecified
encephalomyopathy (9%) or FILA (11%). Overall, 19% of cases
had HCM, associated with Leigh syndrome or other encephalo-
pathic illness in over half of these cases. The remaining 8% of
cases had miscellaneous clinical features, including exercise
intolerance (4%), myoclonic epilepsy (2%), cerebellar ataxia
(2%) and recurrent lactic acidosis in a single case (figure 2C).
By definition, survival was poorest in those with FILA, while
those with isolated exercise intolerance had the best survival.
Rates of progression and survival were broadly the same for all
other phenotypic subgroups (figure 2D). Overall survival
appeared to be longer for patients with assembly factor muta-
tions, which is largely attributable to patients with ACAD9
mutations and exercise intolerance (figure 2E).

Defects in most genes (except where only a single case has
been reported) are associated with considerable clinical heterogen-
eity, as illustrated in figure 2A. For example, mutations in
NDUFAF1 led to fatal infantile HCM in one patient,22 but an

initially severe HCM later improved in another patient who was
still alive at 20 years.21 Similarly, the clinical spectrum associated
with mutations in C20ORF7 ranges from neonatal-onset mito-
chondrial disease leading to death within a few days to adults
with relatively mild Leigh syndrome associated with survival into
the fourth decade.18 42 The factors contributing to this observed
clinical variability are not well understood, but possible explana-
tions include genetic modifiers, environmental factors (eg, expos-
ure to severe viral illnesses, surgery and other metabolic stresses)
and modulation of phenotype by altered immune signalling.22 A
notable exception to this lack of genotype to phenotype correl-
ation is the case of ACAD9 mutations, where nearly all reported
cases had HCM and/or exercise intolerance.45 53 67 These patients
were also characterised by clinical response to riboflavin supple-
mentation.67 However, given the small number of patients
reported with mutations in most of the complex I nuclear
subunit and assembly factor genes, it is difficult to draw definitive
conclusions about genotype to phenotype correlations.

Neuroimaging clues
MRI brain changes are frequently observed in patients with
complex I deficiency, but in most cases are neither specific nor
associated with particular genetic defects. A single-centre retro-
spective review of MRI scans from 30 patients with genetically
confirmed complex I deficiency revealed involvement of brain-
stem structures in 100% of their patients and basal ganglia
lesions (particularly affecting the putamina) in 90%.68 The
brainstem lesions appeared as hyperintensities in the T2 and
Fluid Attenuated Inversion Recovery (FLAIR) sequences and
were hypointense in T1-weighted images. Within this series,
stroke-like lesions appeared to associate with mtDNA muta-
tions and leukoencephalopathy with nuclear subunit muta-
tions. Cerebellar involvement was noted in ∼45% of cases, and
occurred with both mtDNA and nuclear gene defects.68 Lebre
et al reported that the combination of brainstem and striatal
lesions was infrequently observed in their control groups
(MT-TL1 mutations and pyruvate dehydrogenase deficiency),
but comparison was not made with other RC defects causing
Leigh syndrome (eg, complex IV deficiency caused by SURF1
mutations and complex V deficiency caused by MT-ATP6 muta-
tions), which may present with similar MRI appearances.37

In our systematic review, detailed MRI brain reports were
available for 82 of the 172 patients with nuclear-encoded
complex I deficiency. Of these, only 13% had isolated basal
ganglia lesions, while 28% had isolated brainstem lesions and
24% had both basal ganglia and brainstem lesions, supporting
the notion that brainstem lesions may be particularly frequent
in complex I deficient Leigh syndrome. However, systematic
studies of other causes of Leigh syndrome are needed to deter-
mine the specificity of this observation, as discussed in the previ-
ous paragraph. A highly specific neuroimaging pattern was only
seen with mutations in the NDUFAF2 assembly factor: brain-
stem lesions within the mamillothalamic tracts, substantia
nigra, medial lemniscus, medial longitudinal fasciculus and spi-
nothalamic tracts on T2-weighted scans.25 52 69–71 These
patients did not have changes in the thalami and basal ganglia.
In all, 24% of all complex I deficient cases in our review had neu-
roimaging features of leukoencephalopathy, most frequently
associated with NDUFS1 (16 cases) and NDUFV1 (five) muta-
tions, but also in single cases with NDUFS8, NDUFAF3 and
NUBPL mutations. Cerebellar involvement was reported in nine
cases, spinal cord lesions were documented in three cases and
four patients had partial or complete agenesis of the corpus cal-
losum. It is possible that other specific imaging patterns may
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emerge for subgroups of complex I deficiency, as further patients
are genetically characterised. For now, MRI appearances of Leigh
syndrome with brainstem and basal ganglia involvement cannot
be considered sufficiently specific to avoid the need for muscle
biopsy and determination of specific RC enzyme activities.

Histological clues
Most children with complex I deficiency have only minor non-
specific abnormalities in muscle histology, for example, mild
lipid accumulation or fibre type disproportion. The presence of
ragged red fibres should arouse suspicion of an underlying
mtDNA defect, which may be a large-scale rearrangement or
point mutation, or a defect of mtDNA maintenance or transla-
tion. Ragged red fibres are not usually observed in nuclear-
encoded complex I defects but were reported in single cases
with NDUFS4, NDUFS7, FOXRED1 and NUBPL muta-
tions.32 52 72 In addition, occasional patients with nemaline
rods and complex I deficiency have been reported,73 and in one
of these cases mutations of the structural subunit NDUFB3
were identified recently.74

Biochemical clues
Plasma and cerebrospinal fluid lactate were frequently elevated
in the reported cases and do not appear to discriminate
between different molecular genetic defects, nor was there any
significant difference between patients with nuclear subunit
mutations and those with assembly factor defects (figure 2F).
Moreover, lactate levels did not correlate with residual complex
I activity. The results of other metabolic investigations (plasma
amino acid and acylcarnitine profiles and urinary organic acids)
were very infrequently reported, and so it is not possible to
draw any conclusions regarding whether these might provide
diagnostic clues towards specific molecular genetic defects. As
expected, most cases had isolated deficiency of complex I in
skeletal muscle and fibroblasts (and other tissues such as heart
and liver where they were assayed). In most cases, residual
activity of complex I was greater in fibroblasts than in skeletal
muscle. There does not appear to be any correlation between
residual enzyme activity and specific genetic defect (see online
supplementary table S1). In occasional cases, a more wide-
spread OXPHOS defect was observed; for example, a recent
report described complexes I and IV deficiencies in a family
with C20ORF7 mutations.17 Similarly, five patients with
NDUFS4 mutations were reported to have combined deficien-
cies of complexes I and III32 62 75 76 and a further two cases
had a combined defect of complexes I and IV.52 However, the
majority of patients with mutations in these genes had isolated
complex I deficiency. Possible explanations for the presence of
multiple OXPHOS deficiencies in patients with complex I
mutations are that increased ROS generated by dysfunctional
complex I cause oxidative damage to other OXPHOS enzyme
complexes or that mutation of particular complex I subunits
leads to instability of RC supercomplexes, with subsequent
degradation and therefore loss of activity of enzymes not
assembled into supercomplexes.

Analysis of complex I assembly in patient tissues by BNGE is
emerging as a method for identifying patients with abnormal
subassemblies of the enzyme, and directing genetic investigations
towards particular candidate genes in these patients. For example,
all patients with NDUFS4 mutations reported in the literature
accumulate a ∼830 kDa subassembly lacking the N module;77

BNGE screening may be the most efficient way to detect this

subgroup of patients. Patients with NDUFAF1 defects also appear
to have a characteristic subassembly profile, with accumulation of
the ∼400 and ∼460 KDa subassemblies.21 22

On the basis of the above clinical, neuroradiological, bio-
chemical and genetic considerations, we suggest a diagnostic
flowchart as depicted in figure 3.

SECONDARY COMPLEX I DEFICIENCY
A number of ‘secondary’ causes of complex I deficiency have been
reported, most notably Parkinson’s disease (PD).78 Complex I defi-
ciency was first linked to PD in the 1980s when it became
apparent that there was a high incidence of PD in people
who had recreationally used MPTP (1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine), a known inhibitor of complex I.79

Subsequently, a specific reduction of complex I activity was noted
in postmortem substantia nigra specimens from subjects with
PD.80 Mutations of mtDNA-encoded subunits of complex I have
been associated with various cancers, notably thyroid oncocytic
tumours.81 Furthermore, we have recently shown that an
MT-ND2 mutation appears to be involved in tumour cell resist-
ance to the chemotherapeutic agent cisplatin.82 Complex I defi-
ciency has also been linked to several other disease processes,
including autism,83 84 diabetes mellitus85 and a subtype of
Charcot Marie Tooth disease.86 A detailed discussion of secondary
complex I deficiencies is not possible here owing to space con-
straints; the reader is referred to a recent review by Schapira.78

PATHOGENIC MECHANISMS
While impaired ATP production is undoubtedly a major conse-
quence of complex I deficiency, effects of mutations on the
other functions of complex I are also likely to play a significant
part in the pathogenesis of clinical disease. For example,
complex I is a major site of ROS production and ROS are now
regarded as important signalling molecules effecting communi-
cation between mitochondria and other subcellular compart-
ments. Studies have shown that superoxide production is
inversely correlated with complex I activity in complex I defi-
cient fibroblasts.87 Furthermore, fibroblasts with very low
residual activity had increased levels of ROS and fragmented
mitochondrial morphology,88 suggesting that these deficient
mitochondria were being targeted for autophagocytic destruc-
tion or mitophagy.89 The membrane potential is reduced in
complex I deficient fibroblasts90 91 and there appears to be a
linear correlation between membrane potential and increased
superoxide-derived ROS levels.92 Finally, reduced ATP produc-
tion was closely related to ROS levels and membrane poten-
tial,93 suggesting that all of these factors are likely to play a
cumulative role in mediating disease pathogenesis.

MOUSE MODELS OF COMPLEX I DEFICIENCY
The recent development of a number of mouse models of
complex I deficiency is likely to lead to advances in understand-
ing disease mechanisms in complex I deficiency. The first
mutant mouse reported to have complex I deficiency was the
Harlequin mouse, which has a hypomorphic mutation in the Aif
gene encoding the apoptosis-inducing factor.94 However,
although the mutant mice appear to have isolated complex I
deficiency, mutations in the human homologue AIFM1 have
been reported to cause progressive encephalomyopathy with
multiple RC defects rather than isolated complex I deficiency,95

and so the Harlequin mouse may not be the best model for
human complex I deficiency. Since many knockout mouse
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models of nuclear-encoded mitochondrial genes are embryonic
lethal, mice with a conditional deletion of Ndufs4 exon 2 were
created using the Cre/loxP recombination system. These mice
are born apparently healthy but develop ataxia from 5 weeks,
leading to death from progressive encephalomyopathy by
7 weeks.96 Moreover, mice with conditional knockout of Ndufs4
in the central nervous system have neuropathological features
resembling Leigh syndrome.97 The Ndufs6 gene trap mouse
model has isolated complex I deficiency manifesting as cardio-
myopathy starting from postnatal day 30, with heart failure and
weight loss, sometimes causing sudden death, at approximately
4 months in the male mice and 8 months in the female
animals.98 Residual complex I activity is ∼10% of control values,
reflecting very low levels of fully assembled enzyme, and ATP
production is severely reduced in isolated mitochondria using
substrates needing complex I for oxidation. ROS production
appears to be normal in these mutant mice. Although none of
these mouse models perfectly replicates human disease (eg,
human NDUFS6 mutations have never been reported to cause
HCM), it is anticipated that these animal models will prove to

be invaluable tools in unravelling pathogenic mechanisms under-
lying mitochondrial disease, as well as providing a platform for
preclinical trials of candidate therapies for complex I deficiency.

APPROACHES TO TREATMENT
Disappointingly, it is still the case that there are no effective
curative therapies for the majority of cases of complex I defi-
ciency, and symptomatic measures remain the mainstay of
treatment for most patients.99 However, it has been known for
almost 20 years that occasional patients, particularly those
with a myopathic presentation, may show a clinical response
to supplementation with the vitamin riboflavin (B2)100 101.
Until recently, most of these patients did not have a genetic
diagnosis, with the exception of a case with a complex I defi-
cient myopathy caused by the m.3250T>C mtDNA muta-
tion.102 Riboflavin is necessary for the synthesis of FMN and
flavin adenine dinucleotide. Complex I contains a single FMN
moiety, non-covalently bound to the NDUFV1 subunit, but
patients with NDUFV1 mutations do not appear to be particu-
larly responsive to riboflavin. However, a number of recent

Figure 3 Diagnostic flowchart for
isolated complex I deficiency. Proposed
pathway for genetic investigations in
patients with isolated complex I
deficiency. *For suggested diagnostic
pathway for other oxidative
phosphorylation defects, see the
review by Rahman and Hanna.99

**This step is optional; because of the
large number of potential candidate
genes it may be preferable (and more
cost-effective) to move to straight to
whole exome next generation
sequencing (NGS), whilst accepting
the considerable bioinformatics
challenges inherent to whole exome
sequence analysis. See figure 2A for
candidate genes associated with
neurological, metabolic or cardiac
presentations of isolated complex I
deficiency. mtDNA, mitochondrial
DNA. NB nota bene.
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reports have demonstrated that riboflavin responsiveness in
nuclear-encoded complex I deficiency is related to ACAD9 defi-
ciency. ACAD9 is a flavoprotein-containing enzyme which was
initially implicated in long chain fatty acid oxidation103 but
now appears to have a more convincing role in complex I
assembly.45 53 67 Increased flavin adenine dinucleotide availabil-
ity as a result of riboflavin supplementation is thought to sta-
bilise mutant flavoproteins and thereby increase their
activity.104 Riboflavin supplementation was shown to increase
complex I activity approximately twofold in cultured fibro-
blasts bearing ACAD9 mutations,53 and residual muscle
complex I activity also increased from 16% to 47% in a repeat
biopsy taken 2 years after riboflavin therapy was commenced
in one man.105 Riboflavin treatment (at doses ranging from
50 mg/day in a neonate to 100–300 mg/day in adults) has been
documented for five patients with ACAD9 mutations, and
symptomatic improvement was reported in all cases, who were
alive aged 5–24 years at the time of the reports.53 67 105

However, six patients with ACAD9 mutations reported in the
literature died, between the ages of <1 month and
12 years.45 53 74 It is not clear from the reports whether any of
these children received riboflavin.

Although a therapeutic trial of riboflavin should be manda-
tory for all patients with complex I deficiency, most patients
are unlikely to respond. There is a clear need for other treat-
ment strategies. The most promising approaches involve anti-
oxidant compounds or target mitochondrial biogenesis. The
role of the antioxidant vitamin E and its analogues such as
Trolox in complex I deficiency was the subject of a recent
review.106 Analogues of another antioxidant, coenzyme Q10,
have shown promise in arresting disease progression in LHON
if given early.107 108 Mitochondrial biogenesis may be stimu-
lated via various pharmacological agents, which all appear to
act via the common pathway of stimulating the PGC1α trans-
lational coactivator.109 Bezafibrate and AICAR (5-amino-1-β-D-
ribofuranosyl-imidazole-4-carboxamide), which both stimulate
PGC1α, were recently shown to improve various measures of
mitochondrial function in cultured skin fibroblasts from
patients with nuclear-encoded complex I deficiency.110 The
ketogenic diet has also been proposed to increase mitochondrial
biogenesis,111 and there are anecdotal reports of benefit from a
ketogenic diet in occasional patients with complex I deficiency;
for example, temporary improvement of ptosis and ophthalmo-
plegia in a child with NDUFV1 mutations.112 However, other
reports have suggested that increasing dietary fat does not
improve complex I deficiency.113 Finally, two recent reports of
successful gene therapy in rat models of LHON offer hope for
patients with this subgroup of complex I deficiency.114 115

While the above strategies all show promise, most have not
yet reached the stage of preclinical trials, and much work
remains to be done in devising effective therapies for complex I
deficiency. However, although developing new more effective
treatments is undoubtedly important, we must not lose sight
of the fact that there is an urgent need for well designed and
adequately powered clinical trials of the most promising agents
sooner rather than later.

CONCLUSIONS
Complex I deficiency is a common cause of childhood-onset
mitochondrial disease, but the associated clinical and genetic
heterogeneity leads to considerable diagnostic challenges.
Recent advances in genetic techniques, particularly the avail-
ability of relatively inexpensive high-throughput whole exome
next generation sequence analysis, have led to the identification

of the causative gene in large numbers of patients in the last
2 years. This has allowed some tentative genotype to pheno-
type correlations to be made. For example, patients with
ACAD9 mutations typically have HCM and/or exercise intoler-
ance, while those with NDUFAF2 defects have a subtype of
Leigh syndrome with a highly specific neuroimaging appear-
ance. These emerging genotype to phenotype correlations are
important, since they will allow the diagnostic process to be
more rapid, which is crucial for affected families seeking
genetic counselling and prenatal diagnosis. However, some phe-
notypes, notably Leigh syndrome, are characterised by extreme
genetic heterogeneity, and the numbers of reported patients
with mutations in many of the causative genes are too small to
allow genotype to phenotype comparisons to be made. An
ongoing challenge is that a molecular diagnosis remains elusive
for approximately 50% of patients with complex I deficiency,
despite high-throughput sequencing.9 74 There are several pos-
sible explanations for this: determining which of the many var-
iants identified by exome sequencing is pathogenic is a huge
bioinformatic task; mutations may lie in introns or untrans-
lated regulatory regions, and the assumed inheritance pattern
may not be correct (eg, some patients may have de novo domin-
ant mutations, rather than recessive mutations as is usually
assumed for severe early-onset mitochondrial diseases in which
mtDNA mutations have been excluded). Finally, identification
of complex I deficiency should prompt initiation of riboflavin
treatment since some patients, particularly those with ACAD9
mutations, may respond to supplementation with this vitamin.
However, effective treatments are still lacking for the majority
of patients with this devastating group of disorders. The recent
development of several mouse models will be invaluable for
preclinical trials of candidate therapies, but much work
remains to be done.
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Supplementary Table 1 

Gene 
(Complex I 
subunits) 

Numbe
r of 

patient
s 

Age at 
Onset 

Age at 
Death 

Clinical 
phenotype 

Lactate 
(normal <2.0 

mM) 

Complex I 
deficiency  

(% 
residual 
actvity 

compared 
to  mean 
control) 

Gene 
change(s) 

Protein 
change(s) 

References 

2 
5 

months 
14 and 17 

months 
myoclonic 
epilepsy 

CSF 
elevated 

M and Fb 
low 

cpd het 
c.175C>T + 
 c.1268C>T 

 R59X + 
T423M 

1 
6 

months 
10 years 

(macrocystic) 
leuko-

encephalopathy 

CSF 
elevated 

M and Fb 
low 

homozygous 
c.1022 C>T 

A341V 

Schuelke M et 
al. Nat Genet. 
1999 Mar [1] 

1 1 year 3 years LS* B 2.6 mM 
M low (Fb 
normal) 

cpd het 
c.640G>A + 
 A>C intron 8 

splice site 

E214K + 
exon 8 

skipping -> 
unstable 
mRNA 

1 
6 

months 
18 months LS B 4 mM 

M low (Fb 
normal) 

cpd het 
c.1294G>C + 

c.989–990del2 

A432P + 
premature 

stop codon -> 
unstable 
mRNA 

1 
5 

months 
alive at 3 

years 
LS B 4.7 mM 

M low (Fb 
normal) 

cpd het 
c.611A>G + 
 c.616T>G 

Y204C + 
C206G 

Bénit P et al. 
Am J Hum 

Genet. 2001 Jun 
[2] 

1 
First 

months 
not 

reported 
leukodystrophy 

CSF 
elevated 

M 36% (Fb 
normal) 

homozygous 
c.1022C>T 

A341V 

Bugiani M et al 
Biochim Biophys 
Acta. 2004 Dec 

[3] 

1 
7 

months 
 alive at 7 

years 
LS 

B 3.7- 8.0 
mM; CSF 4.8 

mM 

M 32%‡ 
(Fb normal) 

cpd het 
c.611A>G + 
c.616T>G 

Y204C + 
C206G 

Laugel V et al 
Pediatr Neurol. 

2007 Jan [4] 

1 
9 

months 
alive at 16 

months 
(cystic) leuko-

encephalopathy 
B 1.8 mM 

M 30%‡; 
Fb 31%‡ 

cpd het 
c.770G>A + 
c.632T>C  

R257Q + 
A211V 

Zafeiriou DI et 
al. 

Neuropediatrics. 
2008 Jun [5] 

2 
6 and 11 
months 

alive at 32 
months 

leuko-
encephalopathy 

CSF 55 + 44 
mg/dL 

(normal  ≤ 
20) 

M 38% 
homozygous 
c.1156C>T 

R386C 

Breningstall GN 
et al. Semin 

Pediatr Neurol. 
2008 Dec [6] 

1 2 weeks 4 months  FILA 
B 21.6 mM; 
CSF 18.1 

mM 

M 11%; Fb 
20% 

homozygous 
c.1129G>A 

E377K 
Calvo SE et al. 

Nat Genet. 2010 
Oct [7] 

NDUFV1 

2 
3.5 

months 
4.5 months LS 

B 1.7 + 5.2 
mM; CSF 2.3 

+ 2.8 mM  

M low (liver 
normal) 

homozygous 
c.1156G>A 

R386H 
Vilain C et al. 
Clin Genet. 
2011 Jun [8] 

 

 

NDUFV2 

 

 

 

3 5 days 3 months HCM 
B 

persistently 
>5 mM 

M 40-50% 

homozygous 
4bp deletion of 

intron 2 
IVS2+5+8delGT

TA 

skipping of 
exon 2 

Bénit P et al 
Hum Mutat. 
2003 Jun [9] 



 

 

 

NDUFV2 1 
not 

reported 
not 

reported 
HCM not reported F 15%‡ 

homozygous 
4bp deletion of 

intron 2 
IVS2+5+8delGT

TA 

skipping of 
exon 2 

Pagniez-
Mammeri H et 
al. Mol Genet 

Metab. 2009 Apr 
[10] 

2 
4 and 9 
months 

14 months LS 
B 32 mg/dl 

(normal <20) 
M 20%‡; 
Fb 17%‡ 

hemizygous 
c.22G>C 

G8R 

1 
6 

months 
alive at 10 

years  

cerebellar ataxia 
and myoclonic 

epilepsy 
B normal 

M 30%‡; 
Fb 70%‡ 

hemizygous 
c.251G>C 

R37S 

Fernandez-
Moreira D et al 

Ann Neurol. 
2007 Jan [11] 

1 4 years 
alive at 35 

years 

cerebellar ataxia 
and neuro-

degeneration 

B and CSF 
normal  

M 5–10% 
hemizygous 

c.94G>C 
G32R 

1 5 years 
alive at 30 

years 

cerebellar ataxia 
and neuro-

degeneration 

B 3 mM: 
CSF 2 mM 

M 5–10% 
hemizygous 

c.94G>C 
G32R 

Potluri P et al 
Mol Genet 

Metab. 2009 Apr 
[12]  

NDUFA1 

1 
11 

months 
alive at 5 

years 

lactic acidosis 
(recurrent 
episodes) 

B 3–4 mM M 20% 
hemizygous  

c.94G>C 
G32R 

Mayr A et al. 
Mol Genet 

Metab. 2011 
May [13] 

NDUFA2 1 5 days  11 months HCM and LS not reported 
M 20%‡; 
Fb 36%‡ 

homozygous 
c.208+5G >A 

impaired 
exon 2 

splicing -> 
frameshift ->  

unstable 
truncated 
protein -> 
degraded 

Hoefs SJ et al 
Am J Hum 

Genet. 2008 Jun 
[14] 

NDUFA9 1 
soon 
after 
birth 

1 month LS B 10 mM 
M 29%; F 

11% 
homozygous 

c.962G>C 
R321P 

van den Bosch 
BJ et al J Med 
Genet. 2011 

Nov [15] 

1 
<10 

months 
23 months LS* and HCM 

B 8.6 mM; 
CSF 4.9 mM 

M 19%;  Fb 
3% (and Fb 
CIII 34%) 

cpd het c.1A>G 
+ c.425A>G 

M1?  + 
Q142R 

Hoefs SJ et al. 
Eur J Hum 

Genet. 2011 
Mar [16] 

NDUFA10 

1 
>6 

months 
progressiv
e course 

LS 
B and CSF 
elevated 

M <25%; 
Fb <25%  

homozygous 
c.296G>A 

G99E 
Haack TB et al. 
J Med Genet. 
2012 Feb [17] 

3 
10 to 24 
hours 

 40 days FILA and HCM B 10–15 mM 
M 4--27%; 

Fb 45% 
homozygous 
IVS1+5 G>A 

NDUFA11 

3 
3 to 4 

months 

18 months 
; 4 years; 

one patient 
alive at 6 
months 

HCM and 
encephalopathy 

B 3.2–10 
mM 

M 19-39%; 
Fb 46% 

homozygous 
IVS1+5 G>A 

leaky splicing 
-> activation 

of cryptic 
splice site at 
19-20bp of 

exon 1, 
lacking  the 3' 
78bp of exon 

1 

Berger I et al 
Ann Neurol. 

2008 Mar [18] 

NDUFA12 1 2 years 
alive at 10 

years 
LS 

B 4.9 mM; 
CSF 2.9 mM 

M 11%; Fb 
60% 

homozygous 
c.178C>T 

R60X 
Ostergaard E et 
al. J Med Genet. 
2011 Nov [19] 

 

 

 

 

NDUFB3 

 

 

 

1 
intra-

uterine 
4 months FILA B 5.1 mM 

M 6% (M 
CII+III 17% 
+ CIV 54% 

- ?PM 
artefact); 
Fb 12% 
(Fb CIII 
50%)  

homozygous 
c.64T>C 

W22R 
Calvo SE et al. 
Sci Transl Med. 
2012 Jan [20] 



 

 

NDUFB3 1 
not 

reported 
not 

reported 

unspecified 
encephalo-
myopathy 

B elevated Fb 17% 
cpd het 

c.64T>C + 
c.208G>T 

W22R + 
G70X 

Haack TB et al. 
J Med Genet. 
2012 April [17] 

NDUFB9 1 
<6 

months 
progressiv
e course 

unspecified 
encephalo-
myopathy 

B elevated 
M >50%‡; 

Fb 21-
39%‡ 

homozygous 
c.191T>C 

L64P 
Haack TB et al. 
J Med Genet. 
2012 Feb [21] 

3 
2 years; 

4 
months 

10 months; 
7 months 

leukodystrophy 
B 4.4 mM; 

CSF 3.2 mM 
M and Fb 

low 

cpd het 3bp 
deletion at 
c.664-6 + 
c.755 A>G 

in-frame 
codon 222 
deletion + 

D252G 

2 
2 and  3 
months 

5 months; 
3 months 

LS 
B and CSF 
persistently 
high (5 mM) 

M and Fb 
low 

cpd het 
c.721 C>T + 
 c.1669 C>T 

R241W + 
R557X -> 
unstable 
mRNA 

1 
shortly 
aFbter 
birth 

not 
reported 

LS 
B 5.3 mM; 
CSF 4 mM 

M (Fb 
normal) 

cpd het 2119 
A>G +  de novo 

deletion of  
paternal 
NDUFS1 

 allele 

hemizygous 
M707V; de 

novo deletion 
of  paternal 
NDUFS1 

allele 

Bénit P et al. 
Am J Hum 

Genet. 2001 Jun 
[2] 

2 
6 

months 
not 

reported 
leukodystrophy B elevated 

M 45%; Fb 
45% 

homozygous 
c.1564C>A 

Q522K 

Bugiani M et al 
Biochim Biophys 
Acta. 2004 Dec 

[3] 

1 
8.5 

months 
14 months; 
8 months 

LS 

B 24 mg/dL 
(normal < 

20);  CSF 30 
mg/dL 

(normal < 
15) 

M 25% 
homozygous 
c.691C>G 

L231V 
Martín MA et al. 

Arch Neurol. 
2005 Apr [22] 

1 
<6 

months 
not 

reported 
leuko-

encephalopathy 
B 1.9 mM; 

CSF 6.6 mM 
Fb 27% 

cpd het 
c.683T>C + 
c.755A>G 

V228A + 
D252G 

Pagniez-
Mammeri H et 
al. Mol Genet 

Metab. 2009 Apr 
[10] 

1 
8 

months 
12 years 

(cystic) 
leukodystrophy 

not reported 
M 63%‡; 
Fb 27%‡  

cpd het 
c.1669C>T + 
c.1855G>A 

R557X + 
D619N 

2 
4 

months 
8 months; 
7 months 

leuko-
encephalopathy 

B and CSF 
elevated 

M 10%‡ (M 
CIII 70%‡); 
Fb 20%‡ 

homozygous 
c.1222C>T 

R408C 

1 
5 

months 
2 years 

unspecified 
encephalo-
myopathy 

not reported Fb 24%‡ 
cpd het c.631–
633del-GAA + 

c.683T>C 

211delE + 
V28A 

Hoefs SJ et al 
Mol Genet 

Metab. 2010 Jul 
[23] 

2 
4 and 2 
months 

10.5 
months; 10 

months 
LL 

 B 3.3 mM; 
CSF 4.7 mM 

M 23% 
homozygous 
c.1222C>T 

R408C 
Tuppen HA et al 
Brain. 2010 Oct 

[24] 

2 
11 

months 
not 

reported 

(macrocystic) 
leuko-

encephalopathy 

B 2.4 + 5.1 
mM (2.86 

mM in CSF) 

M 45% + 
98%‡; Fb 
146% + 

53% 

homozygous 
c.1783A>G 

T595A 
Ferreira M et al. 
Neurogenetics 
2011 Feb [25] 

1 
5 

months 
3 years 10 

months 
leukodystrophy 

B 
persistently 

elevated 
Fb ~40%‡ 

cpd het 
c.497G>A + 
c.683T>C  

G166E + 
V228A 

1 
6 

months 
1 year 7 
months 

leukodystrophy 
B 

persistently 
elevated 

not 
reported 

cpd het 
c.683T>C + 
c.755A>G 

V228A + 
D252G 

Danhauser et al. 
Mol Genet 

Metab 2011 Jun 
[26] 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

NDUFS1 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 
 

 

 

 

 

 
 

 

 

 

 

 
 

 

 

1 
<6 

months 
progressiv
e course 

unspecified 
encephalo-
myopathy 

B and CSF 
elevated 

M <50%; 
Fb <50% 

cpd het 
c.212T>A + 
c.384T>A 

V71D + 
C128X 

Haack TB et al. 
J Med Genet. 
2012 Feb [21] 



1 
<6 

months 
progressiv
e course 

leukodystrophy 
B and CSF 
elevated 

M <50%; 
Fb <50% 

cpd het 
c.1912insA + 

c.208A>G 

T638NfsX14 
+ Y695C 

1 
>6 

months 
progressiv
e course 

leukodystrophy B elevated 
M <50%; 
Fb <50% 

cpd het 
c.2083T>C + 
c.2084A>G 

Y695H + 
Y695C 

 
 

 

 

 

 

NDUFS1 

1 
>6 

months 
not 

reported 

(macrocystic) 
leuko-

encephalopathy 
not reported 

M 14.5%; 
Fb 50% 

cpd het 
c.1669C>T + 
c.1783A>G 

R557X + 
T595A 

Invernizzi F et 
al. 

Mitochondrion 
2012 Mar [27] 

2 
 6 

months  
24 months 

HCM and 
encephalopathy 

B 9.9 + 12 
mM; CSF 7.8 

mM 

M 20%; Fb 
22-31% 

homozygous 
c.683G>A 

R228Q 

1 day 1 4 days HCM B 24 mM 
M 8.4%; Fb 

20.5% 
homozygous 

c.686C>A 
P229Q 

3 
7  and 

10 
months 

18 months; 
3 years; 2 

years 
LS 

B 4.2, 5.0 + 
12.5 mM; 

CSF 3.3 mM 

M 24%; Fb 
23% 

homozygous 
c.1237T>C 

S413P 

Loeffen J et al 
Ann Neurol. 

2001 Feb [28] 

1 2 hours 3.5 months FILA B 18 mM M 16% 
cpd het 

c.413G>A + 
c.998G>A 

R138Q + 
R333Q 

1 
8 

months 
22 months LS 

B 11.7 mM; 
CSF 5.6 mM 

M 20% 
cpd het  

c.353G>A + 
c.875T>C 

R118Q + 
M292T 

1 
soon 
after 
birth 

alive at 9 
years 

LL not reported M 27% 
cpd het 

c.875T>C + 
c.1328T>A 

M292T + 
M443K 

1 infancy 
alive at 11 

years 
LL 

B and CSF 
normal  

M 13% 
cpd het 

c.442G>A + 
c.875T>C 

E148K + 
M292T 

1 
34 

months 
alive at 6 

years 
LL 

B 3.2 mM; 
CSF 2.7 mM 

not 
reported 

cpd het 
c.866+4A>G + 

c.875T>C 

 splicing 
abnormality + 

M292T 

Tuppen HA et al 
Brain. 2010 Oct 

[24] 

NDUFS2 

1 
<6 

months 
progressiv
e course 

HCM 
B and CSF 
elevated  

M <25%; 
Fb <25% 

cpd het 
c.329A>T + 
c.968G>A 

D110V + 
R323Q 

Haack TB et al. 
J Med Genet. 
2012 Feb [21] 

1 
9 

months 
13.5 years LS CSF 2.7 mM 

M 21%; Fb 
76%‡ 

cpd het 
c.434C>T + 
c.595C>T 

T145I + 
R199W 

Bénit P et al. J 
Med Genet. 

2004 Jan [29] 

NDUFS3 

1 
not 

reported 
not 

reported 

unspecified 
encephalo-
myopathy 

B elevated 
M 28%; Fb 

36% 
homozygous 

c.532C>T 
R199W 

Haack TB et al. 
J Med Genet. 
2012 April [17] 

1 
8 

months 
16 months LL 

B and CSF 
normal  

M 43%‡ (M 
CIII 75%‡) 

homozygous 5-
bp duplication 
c.466_470dupl 

AAGTC 

frameshift 
resulting in 
K158fsX31 

van den Heuvel 
L et al Am J 
Hum Genet. 

1998 Feb [30] 

1 1 week 3 months LS 
B 5.5 mM; 

CSF 7.6 mM 

M 22.4%‡; 
Fb 47%‡ 
(Fb CIII 
87%‡) 

homozygous 
c.289delG 

W96X 

1 7 weeks 3 months LS and HCM 
B 3.0 mM; 

CSF 3.4 mM 

M 14%‡ (M 
CIII 57%‡);  
Fb 60%‡ 
(Fb CIII 
67%) 

homozygous 
c.C316T 

R106X 

Budde SM et al 
Biochem 

Biophys Res 
Commun. 2000 

Aug [31] 

1 
4 

months 
8 months LS 

B 2.4-3.9 
mM; CSF 3.4 

mM  

M 10% (M 
CIII 91%); 
Fb 30% 
(Fb CIII 
88%) 

homozygous 
c.C316T 

R106X 

Budde SM et al 
J Inherit Metab 
Dis 2003 Mar 

[32] 

 

 

 

 

 

 
 

 

 

 

NDUFS4 

 
 

 

 

 

 

 

 

 

 

 1 4 not LS not reported not homozygous D60fs 
Lebre AS et al. J 



months reported reported 

1 
>6 

months 
not 

reported 
LS not reported 

not 
reported 

cpd het 
W97fs + 
S159fs 

Med Genet. 
2011 Jan [33] 

1 2 weeks 7 months LL and HCM B elevated 
M 35%; Fb 

16% 
homozygous 

c.44G>A 
W15X 

Petruzzella V et 
al Hum Mol 
Genet. 2001 

Mar [34] 

2 
2 

months 
4 months LS 

B 6–7 mM; 
CSF 3.9 mM 

M 80%‡ 
homozygous 

IVS1nt-1, G>A 
skipping of 

exon 2 

Bénit P et al 
Hum Genet. 

2003 May [35] 

1 
4 

months 
6 months LS and HCM 

B and CSF 
elevated  

M 4% (M 
CIII 107%); 

Fb 34% 
(Fb CIII 
87%) 

homozygous 
c.178_528del; 

Exon 3-5 
deletion  

D60_K175del
; no protein 
product? 

Rötig et al., 
Biochim Biophys 
Acta 2004 [36]; 
Assouline Z et 

al. Biochim 
Biophys Acta. 
2012 Feb [37] 

3 
3.5 

months 
10 months 

LS and HCM in 
one case; LS in 

twp 

B 1.0 -9.5 
mM; CSF 4.5 

mM 
M low 

homozygous 
c.462delA 

N154fsX33 

Anderson SL et 
al J Inherit 

Metab Dis. 2008 
Dec [38] 

1 
8 

months 
2.4 years LS not reported M 54% 

cpd het 
c.115G>A + 
c.462delA 

N119H + 
K154fs 

Leshinsky-Silver 
E et al. Mol 

Genet Metab. 
2009 Jul [39] 

1 
3 

months 
not 

reported 
LS 

B 3.1 mM; 
CSF3.6 mM 

M 8% (M 
CIV 38%); 
Liver 9% 

(Liver CIV 
54%); Fb 

16% 

cpd het 
c.99-1G>A + 

c.462delA 

S34IfsX4 
(skipping of 
exon 2) + 

K154NfsX35 

1 
4 

months 
2 weeks LS 

B 4.4 mM; 
CSF 3.9 mM 

M 3% (M 
CIV 66%); 
Fb 15% 

cpd het 
c.99-1G>A + 
c.351-2A>G 

S34IfsX4 
(exon 2 

skipping); 
transcript 
unstable 

Calvo SE et al. 
Nat Genet. 2010 

Oct [7] 

1 5 days 
not 

reported 
encephalopathy B elevated 

M 6%; Fb 
47% 

homozygous 
c.99-1G>A 

S34IfsX4 
(exon 2 

skipping) 

1 
3 

months 
6 months LL and HCM 

B and CSF 
elevated 

M 35%; Fb 
69% 

homozygous 
c.291delG 

W97X 

1 
22 

months 
24 months LL not reported 

M 33%; Fb 
76% 

cpd het 
c.472dupAAGT

C 
Y160SfsX31 

1 
3 

months 
4.5 months LS 

B and CSF 
elevated 

M low 
homozygous 
c.99-1G>A 

S34IfsX5 
(skipping of 

exon 2) 

Assouline Z et 
al. Biochim 

Biophys Acta. 
2012 Feb [37] 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

NDUFS4 

1 
<6 

months 
progressiv
e course 

LS and HCM 
B and CSF 
elevated 

M <50% 
homozygous 

c.316C>T 
R106X 

Haack TB et al. 
J Med Genet. 
2012 Feb [21] 

 

 

 

NDUFS6 

 
 

1 
shortly 
after 
birth 

6 days FILA B 6-12 mM Fb 7%‡ 

homozygous 
4.175-kb 
deletion  

encompassing 
exons 3 and 4 

no protein 
product 

Kirby DM et al J 
Clin Invest. 

2004 Sep [40] 



2 
shortly 
after 
birth 

11 days FILA B 6.5 mM Fb 4%‡ 
homozygous 
c.186+2T>A 

frameshift  -> 
premature 
stop codon 
predicting 
truncated 

protein of 71 
instead of 
124 amino 

acids 

2 day 2  8 days FILA 
B 6.0-11.2 

mM; CSF 8.1 
mM 

M 45%‡ 
homozygous 

c.344G>A 
C115Y 

2 6 days 8 days FILA 
B 16.8 mM; 
CSF 18.4 

mM 
M 56% 

homozygous 
c.344G>A 

C115Y 

Spiegel R et al 
Eur J Hum 

Genet. 2009 
Sep [41] 

 
 

 

 

 

 

 

 

 

 

NDUFS6 

1 
<6 

months 
progressiv
e course 

unspecified 
encephalo-
myopathy 

B elevated 
M <50%; 
Fb <50% 

homozygous 
c.352C>T 

Q118X 
Haack TB et al. 
J Med Genet. 
2012 Feb [21] 

2 
8 and 11 
months 

3 years 11 
months; 5 

years 
LS* ; LS 

B and CSF 
normal  

M 23 + 
28%‡ 

homozygous 
c.364G>A 

V122M 
Triepels RH et 
al Ann Neurol. 
1999 Jun [42] 

1 
15 

months 
not 

reported 
LS 

B 4.8 mM; 
CSF 2.8 mM 

Fb 62%‡ 
homozygous 

c.434G>A 
R145H 

Lebon S et al. 
Mol Genet 

Metab. 2007 Apr 
[43]  

NDUFS7 

2 
4 

months 
5 months; 
6 months 

LS x2 B 15 mM 
M 38%; Fb 

68% 

Homozygous 
insertion of 

122bp cryptic 
exon 

(corresponding 
to  first intron of 

NDUFS7) 
between exons 
1 and 2; C>G 

substitution five 
nucleotides 
after 122bp 

insertion (c.17-
1167 C > G) 

frameshift  -> 
shortened 

protein 

Lebon S et al. 
Mol Genet 

Metab. 2007 
Sep-Oct [44] 

1 day 1 11 weeks LS* and HCM 
B 3.4 mM; 

CSF 5.6 mM 
M 39%‡; 
Fb 69% 

cpd het 
c.236C>T + 
c.305 G>A 

P79L + 
R102H 

Loeffen J et al. 
Am J Hum 

Genet. 1998 
Dec [45] 

1 7 years alive at 9y LS 
B and CSF 

normal  
M 31% 

cpd het 
c.254C>T + 
c.413 G>A 

P85L + 
R138H 

Procaccio V et 
al. Neurology. 
2004 May [46] 

1 4 weeks 3 months FILA 
B 7.4 mM; 

CSF 5.5 mM 
M 30% 

homozygous 
c.236C>T 

P79L 
Tuppen HA et al 
Brain. 2010 Oct 

[24] 

1 
8 

months 
14 months leukodystrophy 

B 3.0 mM: 
CSF 2.3 mM 

M 8% (+ 
52% 

residual 
CIV) 

homozygous 
c.460G>A 

G154S 
Calvo SE et al. 

Nat Genet. 2010 
Oct [7] 

1 
not 

reported 
not 

reported 
HCM and 

encephalopathy 
not reported 

M 38%; Fb 
52%  

cpd het 
c.229C>T + 
c.476C>A 

R77W + 
A159D 

NDUFS8 

2 
not 

reported 
not 

reported 
LS x2 B elevated 

M 8%; Fb 
54% 

homozygous 
c.187G>C 

E63Q 

Haack TB et al. 
J Med Genet. 
2012 April [17] 



Gene 
(Complex I 
assembly 
factors) 

Numbe
r of 

patient
s 

Age at 
Onset 

Age at 
Death 

Clinical 
phenotype 

Blood 
lactate 

(normal <2.0 
mM) 

CI def in 
muscles 
related to 
ctr mean 

Gene 
change(s) 

Protein 
change(s) 

References 

1 
11 

months 
alive at 20y 

HCM and later 
multisystem 

disease 

B 5–10 mM 
in  first few 

years of life; 
later 2.5–3.5 

mM  

Fb 36% 
cpd het 

c.1001A>C + 
c.1140A>G 

T207P + 
K253R 

Dunning CJ et 
al. EMBO J. 
2007 Jul [47]  

NDUFAF1; 

CIA30 

1 
6 

months 
6.5 months HCM B 9-18 mM 

M 25%; Fb 
60% 

cpd het 
c.631C>T + 
c.733G>A; 

R211C + 
G245R 

Fassone E et al. 
J Med Genet. 
2011 Oct [48] 

1 
12 

months 
13 years 7 

months 
LL 

B normal; 
CSF 4.2 mM 

M 38%; Fb 
<20% 

hemizygous 
c.182C>T 

R45X 
Ogilvie I et al. J 

Clin Invest. 
2005 Oct [49] 

1 
20 

months 
2 years LL 

B and CSF 
repeatedly 

normal 
M 36% 

homozygous 
c.1A>T 

M1L 

1 
8 

months 
18 months LS 

B normal; 
CSF 2.6 mM 

M 24% 
(53% in fb) 

homozygous 
c.1A>T 

M1L 

Barghuti F et al. 
Mol Genet 

Metab. 2008 
May [50] 

1 
3 

months 
1 year LS B 3-5 mM Fb 21%‡ 

homozygous 
c.114C>G 

Y38X 
Hoefs SJ et al. 

Hum Mutat. 
2009 Jul [51] 

1 
intra-

uterine 
14 months LL 

B 2.5–3.4 
mM 

Fb 45%‡ 

homozygous 
~450kb deletion 
on chromosome 

5, 
encompassing 3 

genes: 
ELOVL7, 

ERCC8 and 

NDUFAF2 

no protein 
product 

Janssen RJ et 
al. Hum Mol 
Genet. 2009 
Sep 15 [52] 

1 
soon 
after 
birth 

27 months LS* 

B initially 4.2 
mM, 

subsequently  
normal; CSF 

normal 

M 12%‡; 
Fb 40% 

homozygous 
c.9G >A 

W3X 
Herzer M et al. 

Neuropediatrics. 
2010 Feb [53] 

2 
6 and 3 
months 

17 months; 
14 months 

LS*; LS CSF 3.2 mM Fb 26% 
homozygous 

c.103delA 
I35SfsX17 

NDUFAF2; 

NDUFA12

L; B17.2L; 

Mimitin 

1 
4 

months 
15 months LS CSF 2.4 mM Fb 32% 

homozygous 
c.221G>A 

W74X 

Calvo SE et al. 
Nat Genet. 2010 

Oct [7] 

3 
1 to 3 
days 

3 months FILA x3 

B 
persistently 
markedly 
elevated 
(peak  27 

mM) 

M 32-40%; 
Fb 39% 

homozygous 
c.229 G>C 

G77R 

1 3 weeks 4 months FILA 
B 5.4 mM; 
CSF 6 mM 

M 26%; Fb 
18% 

homozygous 
c.365 G>C 

R122P 
NDUFAF3; 

C3ORF60 

1 
3 

months 
6 months 

encephalopathy 
including 
myoclonic 
epilepsy 

B peak 27 
mM 

M nd; Fb 
33% 

cpd het 
c.2T>C + 
c.365G>C 

M1T + R122P 

Saada A et al. 
Am J Hum 

Genet. 2009 Jun 
[54] 



9 
soon 
after 
birth 

3 died at 
2–5 days;  

oldest 
survivor 
was 7 

years at  
time of 
report 

FILA x3; 
encephalopathy 
in other cases 

B 38 mM 
M 5.5-17%; 

Fb 32%-
67% 

homozygous 
c.194T>C 

L65P 

Saada A et al. 
Am J Hum 

Genet. 2008 Jan 
[55] NDUFAF4; 

C6ORF66; 
HRPAP20 

1 
<6 

months 
progressiv
e course 

leukodystrophy 
B and CSF 
elevated 

M <25%; 
Fb <25% 

homozygous 
c.23G>A 

G8D 
Haack TB et al. 
J Med Genet. 
2012 Feb [21] 

C8ORF38 2 
7 and 10 
months 

34 months; 
alive at 22 

months 
LS x2 

B 
persistently 

elevated 

M 36%; Fb 
14% 

homozygous 
c.296A>G 

Q99R; 
possible 
splicing 

defect (at 3′ 
end of exon 

2) 

Pagliarini DJ et 
al. Cell. 2008 Jul 
[56]; McKenzie 
M et al.  J Mol 
Biol 2011 Dec 

[57] 

1 
intra-

uterine 
7 days FILA 

B 3.1-16.5 
mM; CSF 
20.1 mM 

M 10-20%; 
Fb 5<25% 

homozygous 
c.719T>C 

L229P 

Sugiana C et al. 
Am J Hum 

Genet. 2008 Oct 
[58] 

3 3 years 

36 years; 
two alive at 
23 and 29 

years 

LS x3 CSF 5 mM 
M 36-48%; 
Fb 6<33% 

homozygous 
c.477A>C 

L159F 
Gerards M et al. 

J Med Genet. 
2010 Aug [59] 

C20ORF7 

5 1 year 

5.9 years; 
four cases 
alive at 2.5, 
4.5, 6 and 

7 years  

LS x5 
B 3.0-3.6 

mM; CSF 2.7 
mM 

M ~20% (+ 
~35% 

residual 
CIV) 

homozygous 
c.749G>T 

G250V 

Saada A et al. J 
Inherit Metab 
Dis. 2012 Jan 

[60] 

1 day 1 
alive at 22 

years 
LS  

B 4-15 mM; 
CSF 3.2 mM 

M 9% (+ 
76% 

residual 
CIV); Fb 

9% (+ 34% 
residual CII 

+ 31% 
residual 

CIII) 

cpd het 
c.694C>T + 
c.1289A>G 

Q232X + 
N430S 

Calvo SE et al. 
Nat Genet. 2010 

Oct [7] 

1 
soon 
after 
birth 

alive at 10 
years 

unspecified 
encephalo-
myopathy 

B 6.8 mM; 
CSF 4.3 mM 

M 7%; Fb 
70% 

homozygous 
c.1054C>T 

R352W 
Fassone E et al. 
Hum Mol Genet. 
2010 Dec [61] 

FOXRED1 

1 
<6 

months 
progressiv
e course 

unspecified 
encephalo-
myopathy 

B normal 
M <25%; 
Fb <25% 

cpd het 
c.406C>T + 

c.615insAGTG 

R316W + 
A206SfsX15 

Haack TB et al. 
J Med Genet. 
2012 Feb [21] 

NUBPL; 

hIND1 
1 2 years alive at 8y  leukodystrophy 

B normal; 
CSF 5.2 + 

2.7 mM 

M 37%; Fb 
19% 

cpd het 
c.166G>A + 

c.815-27T>C on 
one allele and a 

deletion that 
spans exons 1–
4 on the other 

allele 

G56R + exon 
10 skipping 

Calvo SE et al. 
Nat Genet. 2010 

Oct [7] 

1 1 month 
alive at 18 

years 

HCM and 
exercise 

intolerance   

B 3.1-7.6 
mM; CSF 3.6 

mM 

M 31%‡; 
Fb 30% 

homozygous 
c.1553 G>A 

R518H 

 

 

 

 

 

ACAD9 

 

 
 

 

 

1 
4 

months 
6 months 

HCM and 
encephalopathy 

not reported 
M 34%; Fb 

32% 

cpd het 
c.187G>T + 
c.1237G>A 

stop codon 
after 62 

amino acids + 
E413K 

Nouws J et al. 
Cell Metab. 

2010 Sep [62] 
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2 24 hours 
46 days; 
alive at 5 

years 

HCM and 
encephalopathy; 

HCM and 
exercise 

intolerance 

B 4 mM 

M 39% (+ 
slightly 
reduced 

CV); Fb 9% 
(52% CV) 

cpd het 
c.130T>A + 
c.797G>A 

F44I + 
R266Q 

1 
<6 

months 
12 years 

HCM and 
encephalopathy 

B elevated Fb 13% 

cpd het 
c.797G>A + 
c.1249C>T 

(identical to a 
mutation in the 
homologous 

region of 
ACADVL) 

R266Q + 
R417C 

1 
<6 

months 
2 years 

HCM and 
encephalopathy 

B elevated Fb 26% 

cpd het 
c.976G>C 

(found in 3% of 
controls) + 
c.1594C>T 

A326P   + 
R532W 

Haack TB et al. 
Nat Genet. 2010 
Dec [63]; Haack 
TB et al. J Med 

Genet. 2012 
Feb [21] 

3 >4 years 
alive at 15, 
22 and 24 

years 

exercise 
intolerance 

B 2.7-6.5 
mM 

M low; Fb 
38-50% 

homozygous 
c.1594C>T 

R532W 

1 
not 

reported 
not 

reported 
exercise 

intolerance 
B 7.8 mM M low 

cpd het 
c.380G4A (in 

cis + c.379A4C) 
+ c.1405C4T 

R127Q + 
R469W 

Gerards M et al. 
Brain. 2011 Jan 
[64]; Scholte HR 

et al. Biochim 
Biophys Acta. 
1995 May [65] 

1 
<1 

month 
not 

reported 
HCM B elevated Fb low 

cpd het 
c.260T>A + 
c.976G>C 

I87N + 
A326P 

Calvo SE et al. 
Sci Transl Med. 
2012 Jan [20] 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

ACAD9 

3 
not 

reported 
not 

reported 
exercise 

intolerance 
B elevated M 3% 

homozygous 
c.1594C>T 

R532W 
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