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ABSTRACT

Background Cornelia de Lange syndrome (CdLS) is a
multisystem disorder with distinctive facial appearance,
intellectual disability and growth failure as prominent
features. Most individuals with typical CdLS have de
novo heterozygous loss-of-function mutations in NIPBL
with mosaic individuals representing a significant
proportion. Mutations in other cohesin components,
SMCTA, SMC3, HDAC8 and RAD21 cause less typical
CdLs.

Methods We screened 163 affected individuals for
coding region mutations in the known genes, 90 for
genomic rearrangements, 19 for deep intronic variants in
NIPBL and 5 had whole-exome sequencing.

Results Pathogenic mutations [including mosaic
changes] were identified in: NIPBL 46 [3] (28.2%);
SMCTA 5 [1] (3.1%); SMC3 5 [1] (3.1%); HDAC8 6 [0]
(3.6%) and RAD21 1 [0] (0.6%). One individual had a
de novo 1.3 Mb deletion of 1p36.3. Another had a

520 kb duplication of 12g13.13 encompassing ESPL1,
encoding separase, an enzyme that cleaves the cohesin
ring. Three de novo mutations were identified in
ANKRD11 demonstrating a phenotypic overlap with KBG
syndrome. To estimate the number of undetected mosaic
cases we used recursive partitioning to identify
discriminating features in the NIPBL-positive subgroup.
Filtering of the mutation-negative group on these
features classified at least 18% as ‘NIPBL-like'.

A computer composition of the average face of this
NIPBL-like subgroup was also more typical in

appearance than that of all others in the mutation-
negative group supporting the existence of undetected
MOosaic cases.

Conclusions Future diagnostic testing in ‘mutation-
negative’ CdLS thus merits deeper sequencing of
multiple DNA samples derived from different tissues.

INTRODUCTION

Cornelia de Lange syndrome (CdLS, MIM
#122470) is a multisystem disorder characterised
by intellectual disability, prenatal-onset growth
retardation, limb malformations, multiple chronic
medical problems and distinctive facial features
including low anterior hairline, arched eyebrows,
synophrys and long philerum.! Heterozygous
loss-of-function (LOF) mutations in NIPBL can be
identified in more than half the individuals diag-
nosed with typical (aka ‘classical’) CdLS.>™* Mosaic
mutations in NIPBL have recently been reported in
23% of ‘mutation-negative’ cases.” © Heterozygous
mutations in the autosomal genes SMC3’ and
RAD21%® and heterozygous or hemizygous muta-
tions in the X-linked genes SMCIA” ? '* and
HDAC8" ' have been reported in a combined
total of approximately 6% of CdLS cases."?
Individuals with mutations in genes other than
NIPBL mostly have phenotypes that overlap signifi-
cantly with ‘classical’ CdLS but which lack the
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associated major malformations and are often atypical in terms
of growth and/or facial appearance.

Large-scale structural genomic rearrangements that disrupt
the function of known CdLS genes have been reported as affect-
ing NIPBL," '* SMC1A," HDACS8'> and RAD21.® Rare copy
number variants (CNVs) involving 1p36.23-36.22, 7p22.3,
17q24.2-25.3, 19p13.3 and 20q11.2-q12 have also been
reported in association with CdLS-like features."®

The protein products of the known CdLS genes each function
in the cohesin complex.!” '® The best-studied cohesin function
has been its role in sister chromatid cohesion. NIPBL (Scc2 in
yeast, Nipped-B in Drosophila) mediates the loading of a multi-
meric ring structure onto metaphase chromosomes.'”™>' This
ring structure is a complex of SMC1A, SMC3, RAD21 and
STAG1/2 (Smcl, Smc3, Sccl and Scc3 in yeast). The release of
sister chromatids at the end of metaphase is mediated by cleavage
of RAD21 by separase.”” The cohesin complex also has a role in
transcriptional regulation in non-dividing cells.?® 2* Release and
retention of the cohesin ring on interphase chromatin is regu-
lated by the acetylation status of SMC3. SMC3 is acetylated by
ESCO1 or ESCO2 (LOF mutations in which cause Roberts syn-
drome (MIM #268300)>°) and deacetylated by HDACS.''
There is growing evidence that NIPBL may regulate gene expres-
sion via cohesion-independent mechanisms.”® 27 It is not yet
clear which cellular functions of NIPBL and the cohesin complex
cause the clinical phenotype associated with each locus.

Here, we report the results from a comprehensive mutation
analysis in a cohort of typical and atypical CdLS which has
detected new alleles for all the known genes and confirmed
mosaicism of causative mutations in a significant proportion of
cases. We also identified a duplication involving ESPL1 and
demonstrated phenotypic overlap between atypical CdLS and
other disorders of chromatin function. We employed two tech-
niques in order to estimate the number of mosaic cases that we
may have missed. First, recursive partitioning®® *° was used to
identify features that distinguish individual loci in the mutation-
positive patients. Applying the resulting classification trees to
the cases with no mutation identified, suggested that there was a
large number of NIPBL-like cases in this group. Second, we
used a described method for creating an averaged face from a
collection of facial photographs. Using this approach, the
NIPBL-like group’s averaged face had a gestalt score that was
more similar to that of the averaged face of individuals with
NIPBL mutations than to that of the remainder of the mutation-
negative group. We conclude that undetected mosaicism, at least
for mutations in NIPBL, is a plausible explanation for mutation
negativity in our current screening strategy.

METHODS

Patient ascertainment

All patients were referred by experienced clinical geneticists or
paediatricians to the MRC Human Genetics Unit for research
genetic analysis with a diagnosis of CdLS or possible CdLS.
Growth data (weight, length/height and occipital frontal circum-
ference (OFC)) were requested at birth and also at the most
recent assessment. Each individual was scored using published
diagnostic criteria for CdLS." Severity scores®® were calculated
for each individual for whom phenotypic data were available. A
score of <15 is considered mild, 15-22 moderate and >22
severe.

Facial gestalt scores
Single anteroposterior (AP) facial photographs of individuals
referred for research genetic testing were assigned a value

between 1 and 10 (1=highly atypical, 10=highly typical) based
on facial gestalt only. This scoring was performed independently
by three experienced clinical geneticists (DRF, RCMH, AKL).
The scorers were blinded to the genotype information. Since
the three observations were highly correlated (Pearson correl-
ation >0.60, p<1x1071%), the mean score for each patient was
used for further analysis.

Mutation analysis by lon AmpliSeq-lon PGM, and Sanger
sequencing

An AmpliSeq panel of 287 amplicons encompassing the coding
sequences of NIPBL, SMC1A, SMC3, HDACS8, RAD21 and
ESPL1 was designed using the Ton AmpliSeq Designer tool
(http:/www.ampliseq.com) (Life Technologies IAD 27407).
Library preparation was performed according to manufacturer’s
instructions. Libraries were barcoded (Life Technologies) and
quantified using a Bioanalyzer High Sensitivity assay (Agilent
Technologies). Next-generation sequencing was performed on
an Ion PGM (Life Technologies).

Sequence alignment and variant calling were carried out using
the software NextGENe (Soft Genetics), rejecting reads where
>2 bp had a quality score of <12. Sequence alignment was per-
formed with >12 bp matching >65% of the reference. Sequence
identifiers: NIPBL, NC_000005; SMC1A, NC_000023; SMC3,
NC_000010; HDACS8, NC _000023; RAD21, NC _000008;
ESPL1,NC 00012; ANKRD11, NC 000016.10.

Deep sequencing of the NIPBL genomic locus

DNA probes were designed using the software NimbleDesign
(https:/design.nimblegen.com) to capture a region of
229 061 bp encompassing the NIPBL genomic locus (chr5:36
856 861-37 085 921, hgl9). Library preparation and locus-
specific capture were performed using the SeqCap EZ Choice
Library kit (Roche NimbleGen) and TruSeq dual-index barcodes
(llumina) according to manufacturer’s instructions. All captured
libraries were combined and paired-end sequenced in a single
lane of a HiSeq-2000 instrument (Illumina).

Library preparation, exome capture and variant calling
Library preparation for exome capture of five CdLS cases was
performed using the SureSelect Human All Exons 50 Mb kit
(Agilent Technologies) for Illumina paired-end sequencing on a
HiSeq 2000 sequencing system. Quality control, sequence align-
ment and variant calling were performed as described
previously.>!

Pyrosequencing

Allelic quantification of the mosaic NIPBL ¢.1435C>T mutation
in individual II:1 (Family 3061) was carried out by pyrosequen-
cing.** Oligonucleotide primers were designed with PyroMark
Assay Design Software V20 (Qiagen) and are available upon
request. Pyrosequencing was carried out on a PyroMark Q24
Vacuum Prep Workstation (Biotage). The allele quantification
(AQ) mode of PyroMark Q24 software (Biotage) was used for
peak quantification.

Array-based comparative genomic hybridisation (aCGH)

Analysis of genome-wide DNA copy number was performed
using the Nimblegen 135k microarray platform (Roche
Nimblegen) as described previously.>® Results were compared
with the Database of Genomic Variants (http:/dgv.tcag.ca/dgv/
app/home) and polymorphic CNVs excluded. The deletion of
1p36.33-p36.32 was confirmed using the Nimblegen 720k
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whole-genome array (median probe spacing of approximately
2.5 kb).

Genomic copy number assay of ESPL1

Genomic copy number analysis of ESPL1 was carried out using
a TagMan CNV assay (assay ID Hs 02074777 cn) (Applied
Biosystems) with a probe located in exon 3 of ESPL1. Real-time
PCR was carried out on an HT7900 instrument (Applied
Biosystems) and CNV analysis was performed using CopyCaller
software V.1.0 (Applied Biosystems).

Recursive partitioning

Classification trees were created and visualised in R using the
packages RPART, TREE, RATTLE and RPART.PLOT. RPART
was invoked using the parameters, method="‘class’, minsplit=3
and maxdepth=3.

Construction of average faces

We applied the methodology described in Ferry et al** to create
average faces of patients. Briefly, each face was annotated with
36 feature points (constellation). Within a group, all constella-
tions were registered to each other (Procrustes algorithm) and
averaged to obtain an average shape constellation. A reference
face mesh was generated via Delaunay triangulation and the
appearance of each individual face was mapped to the average
face mesh by piecewise affine warping. Averaging of the mapped
appearances gave the average face.

RESULTS

Mutations in known CdLS genes

Using a custom AmpliSeq panel coupled with Ion PGM sequen-
cing, 163 individuals with CdLS or a CdLS-like disorder were
screened. Coverage of the open reading frames of the target
genes was as follows; NIPBL (98%), SMC1A (100%), SMC3
(92%), HDACS8 (99%) and RAD21 (100%). Including four
intragenic CNVs detected by array-based comparative genomic
hybridisation (aCGH) and one single nucleotide variant
detected by exome sequencing, 63 causative mutations were
identified in total: NIPBL, 46 (24 males:22 females) (28.2%);
SMC1A, 5 (1 male:4 females) (3.1%); SMC3, 5 (2 males:3
females) (3.1%); HDACS, 6 (all female) (3.6%) and RAD21, 1
(female) (0.6%) (figure 1A and see online supplementary table
S1). Of the 63 mutations, DNA was available from both parents
in 32 families and of these, 30 of the mutations were shown to
have occurred de novo. The two inherited variants were a
maternally inherited HDAC8 missense mutation and a paternally
inherited RAD21 essential splice site mutation (figure 1A). The
entire NIPBL genomic locus was sequenced in 19 mother/father/
affected child trios (57 individuals) using a targeted next-
generation sequencing approach in order to identify de novo
non-coding mutations and deep intronic mutations.
Approximately 75% of the 229 kb region was sequenced with a
depth of >250% (mean coverage 627 %) which included the
NIPBL coding and non-coding exons, its intronic and splicing
regions and 20 kb of the upstream promoter region. The results
identified no further plausibly pathogenic mutations.

Mosaicism for mutations in known CdLS genes

Each of the cases discussed in this section are included in the
total numbers for mutations in each gene documented in the
preceding paragraph. On exome analysis, a mosaic mutation in
NIPBL coding exon 8 (c.[=/1435C>T] p.[=/(Arg479%]) was
identified in a male CdLS case (Family 3061, individual II:1)
(figure 2A), who had previously been scored negative following

Sanger sequencing of NIPBL. This nonsense mutation was
found in 15% of the reads (31 out of 206 reads). The C>T con-
version was confirmed by pyrosequencing in which the mutated
allele was estimated at approximately 19% as compared with a
control (figure 2A). In addition, two NIPBL mutations
(figure 2B, C, see online supplementary figure S1), one SMC1A
(figure 2D, see online supplementary figure S1) and one SMC3,
that were identified on the AmpliSeq analysis were shown to be
mosaic. A frameshift mutation in NIPBL (individual II:1, Family
3059) was detected at 12% in two saliva-derived DNA samples
from the proband, but was apparently absent in two blood-
derived DNA samples from the same individual (figure 2B, see
online supplementary figure S1). A missense mutation in NIPBL
(individual II:1, Family 4407) was detected at 15% and 38% in
the proband’s blood-derived and saliva-derived DNA samples,
respectively (figure 2C, see online supplementary figure S1). An
in-frame deletion in SMC1A (individual 1I:1, Family 3176) was
detected at 53% (14.3 years) and 10% (18.3 years) in saliva-
derived DNA samples from the proband (figure 2D, see online
supplementary figure S1).

Rare CNVs not encompassing known CdLS loci

aCGH on 90 mutation-negative individuals identified two plaus-
ibly pathogenic variants. A de novo heterozygous 1.3 Mb dele-
tion on chromosome 1p36.33 (chr1:984 137-2 284 140; hg19)
encompassing 47 genes was detected in a female patient
(figure 3A, see online supplementary figure S2A) who presented
with a CdLS-like phenotype. A heterozygous 520 kb duplication
on chromosome 12q13.13 (chr12:53 582 733-54 102 733;
hg19) encompassing 18 genes (figure 3B, see online
supplementary figure S2B) was identified in a male patient with
a CdLS-like disorder. It was not possible to determine if this
duplication had occurred de novo due to unavailability of paren-
tal DNA samples. One of the duplicated genes was ESPLI,
which encodes separase, involved in the release of SMC1A/
SMC3 ring from the newly synthesised sister chromatids prior
to cell division via cleavage of RAD21. A TagMan copy number
assay was used in order to confirm this duplication (see online
supplementary figure S2C) and to screen our patient cohort for
further duplications involving ESPL1. A total of 80 cases were
screened (data not shown). However, no further cases of ESPL1
copy number gain were identified. The coding sequence of the
ESPL1 gene was also screened in 151 CdLS cases as part of the
AmpliSeq panel described above, with the aim of unravelling
intragenic mutations in our cohort. However, no non-
polymorphic variants were identified. In the course of our study,
an intragenic deletion was identified in one of the individuals in
our CdLS-like cohort as part of the Deciphering Developmental
Disorders (DDD) project” (arr 16q24.3(89 351 798-89 412
086)del: Decipher DDD-EDB257747) representing an intra-
genic deletion of ANKRD11 (figure 1B). On review, this boy’s
phenotype was compatible with a diagnosis of KBG syndrome.

Whole-exome analysis and targeted resequencing of
ANKRD11

Whole-exome sequencing was performed on five individuals in
whom no mutation had been identified and where genomic
DNA of sufficient quantity and quality was available. The mean
percentage reads on-target and read depth were 53% and
254x, respectively (see online supplementary table S2). No
plausible mutations could be identified in three of the five indi-
viduals. As mentioned above, one individual had a mosaic
NIPBL mutation. Another individual was found to carry a trun-
cating frameshift mutation in coding exon 7 of ANKRD11
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Figure 1
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(A) Schematic representation of mutations identified in NIPBL, SMC1A, SMC3, HDAC8 and RAD21 within the MRC Human Genetics Unit

Cornelia de Lange syndrome cohort. Mutations involving NIPBL are divided into two classes of loss-of-function (top panel) and missense (bottom
panel) with numbers of NIPBL coding exons shown below the NIPBL protein in grey. Position of the NIPBL intragenic deletion®® is marked by a pink
block. The intragenic duplication in HDAC8'? is marked by a blue block. Positions of all mutations are drawn to scale along the protein product of
the longest isoform, and represented in red (loss-of-function), orange (splice-site) or green (missense). t, denotes the HDAC8 p.(His71Tyr) mutation
inherited from a similarly affected mother with skewed X-chromosome inactivation.'? ¥, denotes the RAD21 essential splice-site mutation, inherited
from an apparently unaffected father. (B) Two novel frameshift mutations identified by whole-exome (K2070Nfs*31) and Sanger sequencing
(L876Pfs*6) are shown in red over the ANKRD11 protein (grey block). The intragenic deletion involving ANKRD11 is depicted by a pink block
(Decipher DDD-EDB257747). ANKRD11 mutations reported previously®® are shown in grey under the ANKRD11 protein block. The first and last
amino acid numbers are marked in black; dn, confirmed de novo; mos, mosaic mutation; mat, inherited maternally; pat, inherited paternally. Protein
accession numbers used are as follows: NIPBL, NP_597677.2; SMC1A, NP_006297.2; SMC3, NP_005436.1; HDAC8, NP_060956.1; RAD21,
NP_006256.1; ANKRD11, NP_001243111.1. DDD, Deciphering Developmental Disorders.

(c.6210_6211del p.(Lys2070Asnfs*31)) which was confirmed as
de novo by Sanger sequencing (figure 1B). This girl had an atyp-
ical CdLS-like phenotype, but notably had a normal head cir-
cumference (OFC=-0.27 SD) as did the boy mentioned above
with the intragenic deletion in ANKRD11. We, therefore,
sequenced the coding and splice regions of ANKRD11 in 10
further individuals with reported OFC >-2.0 SD. Out of the
10 cases analysed, a further de novo case of a 1bp deletion in
ANKRD11 predicted to result in a truncating frameshift muta-
tion was identified in a female individual (figure 1B). The com-
bined phenotypic data on the three ANKRD11 cases are shown
in online supplementary figures S3, S4 and table S3.

Genotype-phenotype analysis

Quantitative and categorical clinical and developmental infor-
mation in referred cases was collected in a systematic manner.
Few statistically significant differences were observed between
the groups if individual components of the phenotype were
compared (see online supplementary figure S3 and table S3).
For example, the median facial gestalt score was higher in the
individuals with NIPBL mutations (figure 4A), but the range of
scores significantly overlapped with all other groups. The
median facial gestalt scores for the individuals with mutations in
non-NIPBL cohesin-component genes are very similar to those
in individuals with ANKRD11 mutations which have been
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Figure 2 Mosaic mutations identified by next-generation sequence analysis. (A) A mosaic nonsense mutation identified by whole-exome
sequencing in NIPBL (alternative allele shown in red) in approximately 15% of the reads (grey bars) (individual 1I:1, Family 3061) (top). The C>T
substitution was confirmed by pyrosequencing (bottom) and found to be at similar levels to the exome data (15%—-19%) as compared with a control
DNA. (B) Sanger sequence confirmation of a de novo 2 bp deletion mutation in NIPBL as detected by lon AmpliSeg-lon PGM sequencing at 12% in
two saliva-derived DNA samples. The mutation appears to be completely absent in two blood-derived DNA samples from the same case (individual
[1:1, Family 3059). (C) Sanger sequence confirmation of a missense N/PBL mutation identified by lon PGM sequencing at 15% in a blood-derived
DNA sample (individual 11:1, Family 4407). (D) Sanger sequence confirmation of a de novo in-frame deletion of 3 bp identified by lon PGM
sequencing in SMCTA at significantly different levels in two saliva-derived DNA samples: 53% and 10% from the same case (individual II:1, Family

3176) at ages of 14.3 years and 18.3 years, respectively.

associated with the ‘non-cohesinopathy’, KBG syndrome. This
confirms the general clinical impression that the facial pheno-
type associated with SMC1A, SMC3 and HDACS8 are somewhat
less discriminative than those associated with NIPBL. The
pattern of prenatal and postnatal growth highlights some poten-
tially interesting differences, with NIPBL, showing progressive
growth failure, whereas at least for weight, the SMC1A group
shows postnatal normalisation (see online supplementary figure
S4 and table S3).

Estimating the number of undetected mosaic mutations

It is clear from the data presented above and those mentioned
in the introduction that a significant proportion of individuals
with typical CdLS have mosaic mutations. We employed two
different approaches in an attempt to estimate the proportion of
the mutation-negative cases that may carry undetected mutations
by our current mutation analysis protocols: recursive partition-
ing and the gestalt of computer-averaged faces from subgroups
within the cohort.

We used the R package, RPART to define discriminative
feature sets within the mutation-positive cases. A simple classifi-
cation tree using only the prenatal and postnatal growth data
and facial gestalt scores is shown in figure 4B. Overall, the
NIPBL branches classified 56 individuals of whom 44 (78%)
had NIPBL mutations. The non-NIPBL branches held 9

individuals, none of whom had a NIPBL mutation. However,
one branch of the tree (figure 4B; weight <—2.4 SD, birth
weight >—4.4 SD), used only two parameters to classify 32 out
of 34 (94%) individuals with NIPBL mutations. When missing
data were removed, all 20/20 remaining cases had NIPBL muta-
tions. Applying this strict feature set filter to the mutation-
negative group identified 19 out of 103 (18%) individuals with
weight <—2.4 SD AND birth weight >—4.4 SD. These cases
can, therefore, be conservatively classed as NIPBL-like.

We used a recently described technique®® to create an aver-
aged face for each molecularly defined subset within the cohort
(figure 5). All the faces show features typical of CdLS, particu-
larly a long rather featureless philtrum and a thin upper lip.
However, the gestalt of the average face for the NIPBL-positive
group is much more typical of CdLS compared with either that
of the whole group or that of the whole mutation-negative
group. When the mutation-negative group is split, the
NIPBL-like subgroup’s face also appears more typical than that
of other mutation-negative cases, although the difference is less
striking.

DISCUSSION

The combination of massively multiplex PCR technology and
next-generation sequencing has revolutionised gene panel-based
diagnostic genetic research and clinical analysis. Using these
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Figure 3  Analysis of genome-wide copy number by array comparative genomic hybridisation. (A) Heterozygous de novo deletion of 1.3 Mb on
chromosome 1 (chr1:984 137-2 284 140; hg19) in PatID 3076. (B) Heterozygous duplication of 520 Kb on chromosome 12 (chr12:53 582 733—

54 102 733; hg19) in PatlD 3040. The regions of deletion and duplication are marked in red and blue boxes, respectively. The genes involved in
each chromosomal rearrangement are also shown, with the Cornelia de Lange syndrome candidate genes in each region highlighted in red. The
genomic context, marked in black at the bottom of each panel is based on human genome assembly GRCh37/hg19. PatID, patient identification.

technologies, we screened the coding sequences of the five
known causative CdLS genes in 163 individuals with CdLS and
CdLS-like phenotypes. As expected, intragenic mutations in
NIPBL were, by far, the most common identifiable cause. The
frequency of intragenic NIPBL mutations in our cohort (~289%)
was considerably lower than the ~50% estimated from pub-
lished reports.” * This is almost certainly due to the composition
of our cohort, which is deliberately enriched for atypical cases,
as we wished to assess the extent of locus and allelic heterogen-
eity in this group. We used a trio-based pull-down approach to
sequence the entire genomic locus of NIPBL to identify deep
intronic or further mosaic mutations that may be causative,
however, none were identified in the 19 families analysed. The
frequency of intragenic mutations in SMC3 in our cohort
(3.1%) is considerably higher than previously reported.”

3/46 NIPBL, 1/5 SMCI1A and 1/5 SMC3 mutations in our
cohort were mosaic. All three mosaic NIPBL mutations were in
individuals with severe and typical CdLS, with one of these
identified via ultradeep (mean depth >250X) whole-exome
sequencing. The mosaic SMCIA mutation was an atypical male
with moderate growth retardation, whose mutation load in the

two saliva samples we had available, varied five-fold (52% and
10%; figure 2). One mosaic SMC3 mutation was found in a
female individual with severe microcephaly and an atypical
facial appearance. HDAC8 mutations have emerged in the last
2 years as a significant contributor to the CdLS-like phenotype.
This locus accounted for six (3.6%) cases in our cohort and
clinical details of these individuals have been reported else-
where.!'? Overall, the pattern of prenatal and postnatal growth
in HDACS cases was less severe than in NIPBL-positive cases
(see online supplementary table S3 and figure S4). We detected
no mosaic mutations in HDACS8. With regard to the frequency
at which we have identified mosaic mutations in this study, the
origin of the DNA that we screened may be important; 44%
was derived from peripheral blood and 22% from saliva. A
recent study identified NIPBL mutations in buccal epithelial
cells of patients with classical CdLS who had been scored nega-
tive by sequencing of blood-derived DNA.® Saliva-derived DNA
has several advantages in the analysis of CdLS; first, it is easy to
collect and second it is of multitissue origin (bone marrow
derived and buccal epithelial cells). Saliva enables multiple
samples to be obtained from individuals, and the level of
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Figure 4 (A) Box plot of the facial Facial Gestalt Score
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Figure 5 Average faces of affected individuals constructed using average of appearance and shape across patient groups. The average face of the
whole cohort (where photographs were available) is shown in the top left hand image. The averaged face of the NIPBL-positive subgroup is shown
below and that of the subgroup containing all of mutation-negative cases is in the top right image. The N/PBL-like and other mutation-negative

patient groups are shown in the bottom middle and bottom right image, respectively (n=numbers of individuals that each average face represents).
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mosaicism and even the presence of the mutation can vary sig-
nificantly over time (figure 2). The mechanism underlying
mosaic mutations in NIPBL, SMCIA and SMC3 merits further
work, as cases of NIPBL mosaicism in our study are indistin-
guishable clinically from those with a heterozygous LOF muta-
tion. However, selection against mutant cells, particularly in
lymphocytes has been suggested as one plausible mechanism.®

Of the 90 individuals screened by aCGH, we identified one
de novo deletion of 1.3 Mb on chromosome 1p36.33-p36.32
and a duplication of 520 kb on chromosome 12q13.13 encom-
passing 18 genes (chr12:53 582 733-54 102 733; hgl19).
Among these, increased dosage of ESPL1 is a plausible mechan-
ism for cohesin dysfunction and thus, also for CdLS. The endo-
peptidase ESPL1 (aka separase) is activated via degradation of
its inhibitory chaperon, securin, to cleave RAD21 in order to
allow the synchronised separation of sister chromatids during
the metaphase to anaphase transition.>® Overexpression of
ESPL1 in mice has been shown to result in the formation of
aneuploid tumours in the mammary gland, and ESPL1 is found
to be significantly overexpressed in human breast tumours.>” We
screened 80 other CdLS individuals using a TagMan CNV assay
but did not identify any further cases of ESPLI duplication.
Finally, we analysed the coding sequences of ESPL1 in 151 of
our CdLS cases as part of the AmpliSeq screen, with the aim of
unravelling gain-of-function mutations within this gene.
However, no causative mutations were detected.

We performed whole-exome sequencing on five individuals
who were mutation-negative to that point. As mentioned above,
one individual was mosaic for a nonsense mutation in NIPBL.
One individual with atypical CdLS had a frameshift mutation in
ANKRD11, which on testing the parental DNA samples was
found to have occurred de novo in the affected child.
Coincident with this finding, a de novo intragenic deletion in
ANKRD11 was identified in one of the individuals in our cohort
via the DDD project. These two individuals were unusual
within our cohort in that they both had head circumferences
within the normal range. A screen for intragenic ANKRD11
mutations in 10 other individuals, with a normal head circum-
ference, revealed one further heterozygous LOF mutation. On
review of the facial dysmorphology associated with KBG syn-
drome,*® there is a clear overlap with the features in CdLS. This
is borne out by the facial gestalt score in this study, performed
blind to the genotype, which suggests that the ANKRD11 cases
are at least as facially similar to classical CdLS as those with
mutations in SMC3 or HDACS (figure 4A). Fortunately, the
head growth parameter appears to provide a simple discrimina-
tive feature for ANKRD11.

In addition to the clinical photographs that we collected to
create the gestalt score, we acquired quantitative growth
data, developmental milestones and physical characteristics
from referred cases using a structured data questionnaire that
could be completed either online or by hardcopy. In general,
results supported previous studies showing more severe
effects on growth and a higher severity score for those with
NIPBL mutations (and particularly, truncating NIPBL muta-
tions).2 7 2 19 30 3941 1imb reduction defects were found in
seven individuals with an identified mutation, all of which were
in NIPBL (see online supplementary table S4). Heart defects
(primarily affecting the septum) were found in 32% of indivi-
duals with an NIPBL mutation, similar to the one-third reported
in a previous study.*” Two individuals with HDACS8 mutations
also had septal defects, close to the 36% previously reported.'?
When individual phenotypic characteristics were compared
between the genetic groups, few statistically significant

differences could be identified. This is probably due to the small
numbers in most of the genetic groups and the allelic diversity
within NIPBL. This latter point is supported by the positive cor-
relation in severity between the mutation classes and growth
failure within NIPBL (see online supplementary figure S4 and
table S3).

One of the most important diagnostic problems in CdLS is
how many mutation-negative individuals harbour undetected
mosaic mutations in known CdLS genes. In an effort to try to
estimate this, we used recursive partitioning to determine if com-
binations of features could discriminate individual molecular sub-
groups. Recursive partitioning techniques to create classification
trees have been used extensively to aid clinical decision making,
particularly in oncology®® and cardiovascular disorders.”” We
created a classification tree that was based only on the quantita-
tive growth data and severity and facial gestalt scores. The tree
successfully differentiated the ANKRD11 cases by head circum-
ference (figure 4B). This tree also enabled us to identify the com-
bination of components which could classify up to a quarter of
the individuals in whom no mutation could be found as
‘NIPBL-like’. The gestalt of the averaged faces in the subgroups
supported the existence of a more typical group within the
mutation-negative subgroup. Although this latter analysis is very
subjective, CdLS is a diagnosis that is typically made on the basis
of facial appearance and most dysmorphologists are very familiar
with the gestalt. This is a technique that is potentially broadly
applicable as it uses standard facial photographs and could be
applied to any syndrome in which there is a characteristic facial
appearance. We have not yet done a similar analysis with the
other known genes, because the number of facial images is not
sufficient and the typical face of the mutation-positive cases is
not yet fully appreciated. Statistical approaches to the similarity
of averaged faces are being developed and may ultimately replace
the human gestalt assessment.>* The NIPBL-like group are
clearly an interesting group on whom to focus future research, as
they are likely to be enriched for mosaic cases. Deeper sequen-
cing from a variety of different tissues may be required to deter-
mine the optimal diagnostic approach. Our preferred strategy in
cases of classical CdLS would involve screening of the five known
genes in skin-derived or saliva-derived DNA, aCGH analysis of
mutation-negative cases and finally trio-based (proband/mother/
father) whole-exome sequencing of the mutation-negative indivi-
duals. In cases of atypical CdLS, screening of blood-derived
DNA may also be performed.

Another possible explanation for why we were not able to
identify causative mutations in the majority of the individuals in
our cohort is that the causative mutations lie in other genes.
Other genes are yet to be discovered, but the identification of
ANKRD11 mutations in our group suggests that on the basis of
facial dysmorphology, at least, there is a significant overlap
between cohesinopathies and other chromatin disorders. Our
future work will aim to extend the molecular analysis to include
trio-based whole-exome approaches and to continue to collect
comprehensive clinical and developmental information and
facial images from as many cases as possible. It is likely that the
differences between the genetic groups will lead to interesting
insights into the function of the individual gene products.
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