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ABSTRACT
Background Autism spectrum disorders (ASDs) are
common and have a strong genetic basis, yet the cause of
∼70–80% ASDs remains unknown. By clinical
cytogenetic testing, we identified a family in which two
brothers had ASD, mild intellectual disability and a
chromosome 22 pericentric inversion, not detected in
either parent, indicating de novo mutation with parental
germinal mosaicism. We hypothesised that the
rearrangement was causative of their ASD and localised
the chromosome 22 breakpoints.
Methods The rearrangement was characterised using
fluorescence in situ hybridisation, Southern blotting,
inverse PCR and dideoxy-sequencing. Open reading
frames and intron/exon boundaries of the two physically
disrupted genes identified, TCF20 and TNRC6B, were
sequenced in 342 families (260 multiplex and 82 simplex)
ascertained by the International Molecular Genetic Study
of Autism Consortium (IMGSAC).
Results IMGSAC family screening identified a de novo
missense mutation of TCF20 in a single case and
significant association of a different missense mutation of
TCF20 with ASD in three further families. Through exome
sequencing in another project, we independently
identified a de novo frameshifting mutation of TCF20 in a
woman with ASD and moderate intellectual disability.
We did not identify a significant association of TNRC6B
mutations with ASD.
Conclusions TCF20 encodes a transcriptional
coregulator (also termed SPBP) that is structurally and
functionally related to RAI1, the critical dosage-
sensitive protein implicated in the behavioural
phenotypes of the Smith–Magenis and Potocki–Lupski
17p11.2 deletion/duplication syndromes, in which ASD is
frequently diagnosed. This study provides the first
evidence that mutations in TCF20 are also associated
with ASD.

INTRODUCTION
Autism spectrum disorders (ASDs) are common
neurodevelopmental conditions characterised by
impairments in social communication, the presence
of repetitive behaviours and a restricted range of
interests; intellectual disability is present in around
50% of people with ASD.1 2 Family and twin

studies show that ASDs have a strong genetic basis:
at least 5–10% of siblings of children with ASD
have an ASD diagnosis themselves.2 Siblings and
parents of children with ASD are more likely than
controls to show behavioural traits similar to those
seen in people with ASD (the broader autism
phenotype (BAP)).3 4 Additionally, monozygotic
twins are more likely to be concordant for ASD
compared with dizygotic twins.5

Many rare mutations and variants have been
shown to cause or increase the risk of ASD.6–9 For
example, ASD occurs in several clinically defined
monogenic and chromosomal disorders (including
fragile X, Down, Angelman and Rett syndromes,
neurofibromatosis and tuberous sclerosis). No
common variants of large effect in ASD have been
found10; however, multiple rare variants causing
ASD have been identified in research and clinical
settings through array comparative genomic hybrid-
isation (CGH) and high-throughput exome and
genome sequencing.7–9 11–19 Taking account of
genetic causes and other medical/neurodevelopmen-
tal conditions, the cause of ASD remains unidenti-
fied in ∼70–80% of affected individuals; hence, a
substantial proportion of causative loci remains to
be identified.6–8

The present study started with the identification
of a de novo pericentric inversion of chromosome
22, present in two brothers who both had ASD.
Further characterisation of the rearrangement
revealed it to be complex, consisting of four separate
chromosome 22 breakpoints physically disrupting
two genes, TCF20 (encoding transcription factor
20) and TNRC6B (encoding trinucleotide repeat
containing 6B), both of which appeared plausible
candidates for involvement in ASD. Building on this
initial finding, we present additional evidence impli-
cating TCF20 in ASD, based both on the results of
resequencing of TCF20 and TNRC6B in samples
from the International Molecular Genetic Study of
Autism Consortium (IMGSAC) and on the separate
identification of an additional TCF20 frameshifting
mutation associated with ASD. We propose that
precise dosage of TCF20 is important for neurode-
velopment, and that functional perturbation of
TCF20 confers susceptibility to ASD.
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MATERIALS AND METHODS
Patient ascertainment and diagnostic studies
Patients from two unrelated families (#1 and #6) were originally
referred for assessment of coexisting craniosynostosis. Ethical
approval for research into craniofacial malformations, and the
specific ASD studies undertaken in these families, was provided
by the Oxfordshire Research Ethics Committee B (C02.143) and
the West London Research Ethics Committee (09/H0706/20),
and informed consent was obtained. Genetic analyses were per-
formed on DNA and RNA extracted from peripheral blood and
lymphoblastoid cell lines. The human genome hg19 sequence
release (February 2009) was used for all analyses.

Ascertainment of ASD and control samples
Multiplex and simplex ASD families were identified, collected
and assessed by the IMGSAC as previously described.20 21

Ethical approval was obtained for the collection of all data, and
written informed consent was obtained from all parents/guar-
dians or, where appropriate, the proband. Parents were adminis-
tered the Autism Diagnostic Interview-Revised (ADI-R)22 and
the Vineland Adaptive Behavior Scales.23 Probands were
assessed using the Autism Diagnostic Observation Schedule-
Generic (ADOS-G),24 and a medical examination was carried
out to exclude cases of known aetiology. IQ was assessed using
standardised measures of verbal and performance ability.25 26

Whenever possible, probands were karyotyped and molecular
genetic testing for fragile X syndrome was performed. Family
history interviews4 were used to investigate BAP behaviours and
traits in siblings and parents when possible.

A cohort of 384 UK DNA controls from randomly selected
unrelated UK Caucasian blood donors was obtained from the
European Collection of Cell Cultures (ECACC) (http://www.
hpacultures.org.uk/products/dna/hrcdna/hrcdna.jsp). An additional
432 locally sourced controls were tested in the case of the TCF20
c.4670C>T variant.

Fluorescence in situ hybridisation
Fluorescence in situ hybridisation (FISH) mapping of the chromo-
some 22 breakpoints in family #1 used BACs and fosmids
obtained from the Children’s Hospital Oakland Research Institute
(CHORI); see table 1 for clone names and locations. Clones were
labelled by nick-translation (Abbott Molecular) either with
digoxigenin-11-dUTP (Roche) or biotin-16-dUTP (Roche). FISH
was carried out following standard procedures. Briefly, the DNA
probes were denatured at 75°C for 5 min and preannealed at 37°C
for 45 min. Slides were denatured in 70% formamide/2× saline
sodium citrate (SSC) at 70°C for 1 min and hybridised in a moist
chamber at 37°C overnight. After washes in 50% formamide/1×
SSC and 2× SSC at 42°C, the probes were detected with either
fluorescein-conjugated antidigoxigenin (Roche) or Cy3-conjugated
streptavidin (Sigma). The slides were counterstained with
40,6-diamidino-2-phenylindole (DAPI) in Vectashield (Vector
Laboratories) and analysed on a Cytovision system (Leica).

Array CGH
Array CGH was performed using a human genome-wide 185K
oligonucleotide array (Agilent Technologies). Genomic DNA
from the inversion patient (II-4, family #1) and from a sex-
matched reference were double-digested separately using the
restriction endonucleases AluI and RsaI (Promega) and purified
using Microcon centrifugal filter devices (Merck Millipore).
A total of 1.5 μg of the digested products was differentially
labelled by the random priming method using the fluorophores
Cy3-dUTP and Cy5-dUTP (Perkin Elmer) and co-hybridised to
the array for 48 h at 65°C in a rotating oven. The hybridised
arrays were washed and scanned using an Agilent Microarray
Scanner. The image data were extracted using Agilent Feature
Extraction software V.8.5, and the data analysed using Agilent
CGH Analytics software V.3.4 (z-score method setting).

Single-nucleotide polymorphism array hybridisation
Genomic DNA from the inversion patient (II-4, family #1) was
analysed using an ∼300K Human CytoSNP-12 BeadChip
according to manufacturer’s guidelines (Illumina Inc, San Diego,
CA). Briefly, ∼200 ng DNA was denatured, amplified, fragmen-
ted enzymatically and hybridised to the BeadChips in an
Illumina Inc. hybridisation oven at 48°C for 16–24 h. The
BeadChips were washed according to the manufacturer’s proto-
col and the hybridised DNA subjected to primer extension with
labelled nucleotides prior to detection using fluorescent anti-
bodies. Data were processed using GenomeStudioV2009.2
(Illumina Inc) and analysed using Nexus Discovery Edition v6.1
(BioDiscovery, Hawthorne, California, USA).

Isolation of breakpoints A, B and C on chromosome 22
We obtained BACs and fosmids and performed FISH analysis, ini-
tially to identify breakpoint A (table 1). Identification of a split
signal using two fosmids localised the breakpoint within ∼35 kb;
single-copy probes spanning this region were synthesised and
hybridised to Southern blots of patient and control DNA, further
refining the breakpoint within ∼1 kb. Three breakpoint-specific
primers (TSP1, 50-GTTTTGGAGCGCCACAAAGCACT-30;
TSP2, 50-CAAAGCACTCCCATATAAGACGGCG-30; TSP3,
50-AGACGGCGAACTTAATATATACATGTTGTG-30) were com-
bined with redundant primers in nested PCR with the DNA
Walking SpeedUp Premix Kit (Seegene). After DNA sequencing to
determine the site of the breakpoint and to identify the sequence
and location of DNA on the other side of it (breakpoint B), a
further primer pair (50-GATAAATTTTAGCTATTATTATT

Table 1 Clones used for fluorescence in situ hybridization (FISH)
analysis in family #1

Clone name
Genomic location
on Chr22

Position of signal
on der(22) Breakpoint

CTA-150C2 39280232-39481326 Long arm
WI2-1570N6 39476065-39520769 Split short/long arms C
WI2-1013H1 39557188-39594983 Short arm
WI2-2202O13 39516811-39555371 Short arm
WI2-1769B14 39587327-39627092 Short arm
WI2-3097P13 39612987-39654267 Short arm
WI2-1881P6 39642520-39684613 Short arm
WI2-624P20 40026816-40067597 Short arm
WI2-1574G19 40631976-40678518 Short arm B
WI2-1927K3 40743240-40784809 Long arm B
CTA-250D10 42252765-42473659 Long arm
G248P86612G1 42600994-42642421 Split short/long arms A
RP11-241G19 42605118-42782007 Split short/long arms A
G248P84377G7 42640176-42679204 Short arm
RP11-794G14 43105492-43331920 Short arm
RP11-1021O19 43972241-44158005 Short arm
RP11-357F14 44543405-44721394 Short arm
RP11-49A20 45141573-45322938 Short arm
CTA-268H5 45574232-45797207 Short arm
CTA-722E9 49795787-49928065 Short arm
CTA-799F10 51078917-51174589 Short arm

738 Babbs C, et al. J Med Genet 2014;51:737–747. doi:10.1136/jmedgenet-2014-102582

Cognitive and behavioural genetics

 on A
pril 20, 2024 by guest. P

rotected by copyright.
http://jm

g.bm
j.com

/
J M

ed G
enet: first published as 10.1136/jm

edgenet-2014-102582 on 16 S
eptem

ber 2014. D
ow

nloaded from
 

http://www.hpacultures.org.uk/products/dna/hrcdna/hrcdna.jsp
http://www.hpacultures.org.uk/products/dna/hrcdna/hrcdna.jsp
http://www.hpacultures.org.uk/products/dna/hrcdna/hrcdna.jsp
http://jmg.bmj.com/


ACCACCTAGAAGCT-30 and 50-TTATAGACAAAGGCTAAGGG
CAGATG-30) was designed to confirm the breakpoint by amplify-
ing a 1.5 kb fragment.

To identify breakpoint C, we conducted further FISH and
found a split signal with BAC W12-1570N6 (table 1). We
screened this ∼44.7 kb region by Southern blot analysis and
identified a 15 kb HindIII fragment as likely to span the
breakpoint.

Identification of novel TCF20 exon
A comparison of the human and mouse cDNA sequences
showed that the mouse Tcf20 transcript contains an extra exon
encoding an extended 50 untranslated region (UTR).27

Correspondingly, comparison of the human and mouse genomic
sequence revealed a highly conserved region ∼68.5 kb telomeric
of the first annotated exon of TCF20 in the human genome. We
isolated total RNA from normal human transformed
B-lymphocytes and generated cDNA using random hexamer
primers (RevertAid, Fermentas). Following amplification using
cDNA as template with primers in the large exon of TCF20
and the conserved region (primer pair 50-TCCTCCCCCGCC
TCGGCTCAG -30 and 50-CACTGCTGCCACTACTGCCACC
TGTAC-30), we found the conserved region to be spliced to the
previously identified exon 1 of TCF20, indicating that this
region represents a previously unannotated exon of human
TCF20 (GenBank KF851355).

DNA sequencing of TCF20 and TNRC6B
The entire open reading frames of TCF20 (RefSeq accession:
NM_005650.1) and TNRC6B (isoform 1: NM_001162501.1
and isoform 3: NM_001024843.1) were screened in the ASD
panel using primers and reaction conditions shown in online
supplementary table S1. Fragments were DNA sequenced on the
ABI PRISM 3730 DNA sequencer, employing Big Dye
Terminator mix V.3.1 (Applied Biosystems). Sequence chromato-
gram traces were analysed using Mutation Surveyor
(Softgenetics) and Sequencher (Gene Codes). We compared the
occurrence of variants in a normal control panel of 384 samples
by dideoxy sequencing and examined the frequency of each
variant in 8600 European American (EA) alleles from the
Exome Variant Server (EVS).28 Synonymous and intronic var-
iants were assessed for their potential to affect splicing using the
Splice Site Prediction by Neural Network (http://www.fruitfly.
org/seq_tools/splice.html), and pathogenicity of missense substi-
tutions was investigated with PolyPhen-2 (http://genetics.bwh.
harvard.edu/pph2/). Nucleotide numbering of variants in cDNA
starts at the initiation ATG codon (A=1).

Microsatellite and single-nucleotide polymorphism analysis
The haplotype surrounding the TCF20 c.4670C>T variant
identified in three families was investigated by amplifying seven
flanking microsatellites (see online supplementary table S2) in
proband and parental samples using primers labelled with
the fluorophore 6-FAM. Fragments were analysed by capillary
electrophoresis on an ABI 3730 containing POP-7 polymer, and
peaks were visualised using Gene Mapper V.3.7 (Applied
Biosystems). Informative single-nucleotide polymorphisms
(SNPs) (see online supplementary table S2) were amplified and
sequenced as described above.

Correct biological relationships of samples (and hence, exclu-
sion of non-paternity) were confirmed in all three families with
de novo TCF20 mutations (#1, 2 and 6) using at least 10 micro-
satellites located on different chromosomes.

cDNA analysis
RNA was extracted from a lymphoblastoid cell line using
TRIzol/RNeasy (Qiagen) and ∼1 mg used for cDNA synthesis
with random hexamers. The region containing the mutation was
amplified from the proband’s cDNA, an equivalent (-RT)
control without addition of reverse transcriptase, and genomic
DNA from proband and parents using TCF20 Exon 2.9 primers
(see online supplementary table S1), followed by a digestion
with BslI and agarose gel electrophoresis.

RESULTS
Chromosome 22 rearrangement associated with ASD
The proband II-4 in family #1 (pedigree, figure 1A) was
assessed at the age of 7 months because of an abnormal cranio-
facial appearance (figure 1C). Plain radiographs and CT of the
skull showed fusion of the metopic and coronal sutures and
extensive copperbeating suggestive of raised intracranial pres-
sure; the brain appeared structurally normal. Subtotal calvarial
remodelling was performed at the age of 1 year. Karyotyping of
peripheral lymphocytes revealed a pericentric inversion of
chromosome 22, reported as 46,XY,inv(22)(p11?.2-q13?.1).
Testing of the family showed the same abnormal karyotype in
his older brother, who had no craniofacial dysmorphism (II-2;
figure 1B); surprisingly, the karyotypes of both parents (I-1 and
I-2), as well as the other two siblings (II-1 and II-3), were
normal. During childhood, the two brothers with the inversion
(II-2, II-4), but not their siblings or parents, were diagnosed
with clinical autism and mild intellectual disability by their local
clinicians; subsequently, both individuals met autism criteria
during research assessments using ADOS-G (table 2). Array
CGH of DNA from the proband was performed using 185K

Figure 1 Pedigree of family #1 and facial appearance of individuals
heterozygous for chromosome 22 rearrangement. (A) Pedigree showing
the immediate family of the proband (arrow). Filled symbols represent
individuals shown to carry the rearrangement. N indicates absence of
the rearrangement. (B) Normal facial appearance of the proband’s older
brother II-2, aged 10 years. (C) Facial appearance of the proband aged
10 months showing trigonocephaly associated with hypotelorism and
mild exorbitism, caused by premature synostosis of the metopic suture.
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and 300K genome-wide oligonucleotide arrays (see ‘Methods’),
but neither revealed any significant gain or loss of material.

To characterise the molecular nature of the pericentric inver-
sion, we performed FISH using multiple BACs and fosmids
(table 1). These probes were initially focused on the 22q13.1
band in which the long-arm breakpoint had been tentatively
located, but several further rounds of analysis were performed as
greater complexity in the rearrangement became apparent
(figure 2). The observation of split signals with two fosmids loca-
lised one breakpoint (termed breakpoint A) to a ∼37 kb region
(figure 2A). Further analysis by Southern blotting with single-
copy probes identified breakpoint fragments, initially within a
∼15 kb EcoRI fragment, and subsequently within a 248 bp frag-
ment bordered by StuI and AflIII restriction sites (not shown).
PCR primers were designed to amplify across the breakpoint in
sequentially nested amplifications with degenerate primers (see
‘Methods’). Surprisingly, DNA sequencing of this amplification
product identified the sequence on the centromeric side of the
break as originating from a location ∼1.9 Mb centromeric of
breakpoint A (figure 2D, bottom right). These sequence data
showed contiguity between nucleotides at coordinates at 40 709
620 bp (breakpoint B) and 42 634 698 bp (breakpoint A), adja-
cent to a short stretch of 5-nucleotide (50-GACCT-30) comple-
mentarity (figure 2D). Confirming the identification of
breakpoint B, clones closely adjacent on either side of this loca-
tion mapped to opposite arms of the der(22) (figure 2B). This
result implied that a third more centromeric break on the long
arm (‘breakpoint C’) must have occurred, to which the inter-
mediate segment (B-A) had been joined. This break was localised
using FISH to an ∼44.7 kb region within BAC clone
W12-1570N6 (figure 2C). Analysis by Southern blotting
revealed a HindIII restriction fragment that likely spanned the
breakpoint (figure 2D, bottom left), locating the breakpoint to a
∼4 kb region between 39 507 139 and 39 511 083 bp.
Figure 2D summarises the structure of the derivative chromo-
some 22 as concluded from the FISH, Southern blotting and
DNA sequencing results. Breakpoint D is predicted to occur in
the short arm satellite sequence of chromosome 22 and was not
characterised further. Although (as demonstrated by array CGH)
there has been no major gain or loss of material at the break-
points, we found evidence of a small (∼10 kb) duplication at
breakpoint A (data not shown) and this may apply to others too,
most consistent with the replication-based fork stalling template
switching (FoSTeS)-type mechanism for the complex chromo-
some rearrangement.29

Gene content at breakpoints A, B and C and selection of
TCF20 and TNRC6B for further analysis
We analysed the three breakpoints on the long arm of chromo-
some 22 to determine whether they disrupted any genes.
Initially breakpoint A appeared to locate within an intergenic
region; however, because of sequence homology with the mouse
orthologue of TCF20 in which an extra exon is described,27 we
predicted the existence of a previously unannotated exon
located 50 of the currently annotated first exon of human
TCF20. Primers for cDNA analysis of the corresponding human
region were designed (see ‘Methods’); starting with RNA iso-
lated from transformed B lymphocytes, we found this region is
indeed spliced to the previously described first exon of TCF20
(see online supplementary figure S1). This novel exon of the
human TCF20 transcript encodes an extended 50 UTR.
Therefore, breakpoint A disrupts TCF20 in intron 1 at a pos-
ition 23.3 kb 50 of exon 2 (figure 3A). TCF20 encodes a tran-
scriptional coregulator paralogous to RAI1, the causative gene in
Potocki–Lupski syndrome (duplication of 17p11.2), which is
associated with ASD in ∼90% of cases;30 31 deletions of this
region cause Smith–Magenis syndrome, characterised by severe
intellectual disability and neurobehavioural problems, including
ASD.32 33 Breakpoint B locates within intron 19 of TNRC6B,
which encodes a product that stably associates with argonaute
proteins required for microRNA-guided mRNA cleavage.34

Breakpoint C does not apparently disrupt any genes, occurring
>12 kb telomeric of APOBEC3H and >5 kb centromeric of
CBX7 (figure 2D, bottom left).

We hypothesised that the ASD present in the two brothers
with the complex chromosome 22 rearrangement was most
likely due to altered function of one or both of the two physic-
ally disrupted genes, TCF20 and TNRC6B. There is no estab-
lished abnormal phenotype associated with mutations in either
of these two genes, or in their murine orthologues, although
there are reports of copy number variations (CNVs) that include
TNRC6B being linked to ASD (see ‘Discussion’). We therefore
proceeded to resequence both genes in the large number of fam-
ilies recruited by IMGSAC.

Resequencing of TCF20 and TNRC6B in the IMGSAC cohort
TCF20 comprises six exons, five of which encode two open
reading frames of 5880 and 5814 nucleotides generated by alter-
native splicing (figure 3A). TNRC6B is alternatively spliced to
generate multiple isoforms, including 25 different coding exons.
We undertook DNA sequencing of the coding sequences of both

Table 2 Summary results of Autism Diagnostic Observation Schedule-Generic (ADOS-G) and IQ/developmental assessments in subjects with
TCF20 mutations

Family # Patient ID TCF20 abnormality
ADOS-G social communication score
(age at assessment in years) IQ/developmental quotient (test, age at assessment in years)

1 II-4 (proband) Inversion break intron 1 13 (10 years) Full scale 79, verbal 79, performance 79 (WPPSI-3, 3.5 years)
1 II-2 (brother) Inversion break intron 1 16 (12 years) Communication 45, daily living 55, socialisation 44 (VABS, 7 years)
2 proband p.K512E 16 (7 years) Full scale 120 (WASI, 13 years)
3 proband p.P1557L 11 (8 years) Performance 100 (Raven’s matrices)
4 proband p.P1557L NA NA
5 proband p.P1557L 11 (10 years) Performance 80 (Raven’s matrices)
5 brother p.P1557L NA Performance 107 (Raven’s matrices)
6 proband p.K1173Rfs*5 12 (25 years) Full scale 45, verbal 50, performance 47 (WISC-3, 14 years)

NA, not available; VABS, Vineland Adaptive behaviour Scales; WASI, Wechsler Abbreviated Scale of Intelligence; WISC, Wechsler Intelligence Scale for Children; WPPSI, Wechsler
Preschool and Primary Scale of Intelligence.
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genes, including the intron–exon boundaries, in 342 unrelated
ASD probands (260 from multiplex pedigrees and 82 from
simplex families) from the IMGSAC cohort, and where possible
performed parent and sibling studies of the rare variants identi-
fied. The occurrence of all variants likely to be functionally rele-
vant (either amino acid altering or predicted to affect splicing)
was compared with normal control data as described in
‘Methods’. The results for TCF20 are summarised in table 3 and
those for TNRC6B in online supplementary table S3.

In TCF20, we identified two common SNPs and eight differ-
ent rare heterozygous changes (encoding two in-frame deletions
and six non-synonymous substitutions), each present in between
1 and 10 ASD probands. Common SNPs did not differ in fre-
quency between cases and controls. Of the rare variants, six

were considered unlikely to be causally contributory either
because they were present at significant frequency in the EVS
(n=4) or an affected sibling did not inherit the variant allele
(n=2). The remaining two variants (c.1534A>G and
c.4670C>T), identified in one and three different families
respectively, were considered potentially pathogenic. The
dideoxy sequencing and segregation of these variants is shown
in figure 3B, and the positions of the encoded missense changes
in the TCF20 protein domain structure and species conservation
in figure 3C. In the multiplex ASD family #2, the c.1534A>G
transition encodes a likely damaging p.K512E substitution
(PolyPhen-2 score 0.97), which had arisen de novo in the
proband. This individual had classical Asperger syndrome with
good intellectual function (table 2), whereas his cousin had

Figure 2 Structure of the chromosome 22 rearrangement deduced from fluorescence in situ hybridization (FISH) analysis and DNA sequencing.
(A–C) Representative FISH analysis and diagrammatic interpretation of structure of the rearranged chromosome (der22), shown in more detail with
positions of breakpoints in (D). (A) Signals from RP11-241G19 (green), which spans breakpoint A, and the more distal RP11-49A20 (red) are
adjacent on the normal chromosome 22 (arrowhead) but a split green signal is seen near the opposite end of the der22 (arrow). (B) Clones
W12-1927K3 (red) and W12-1574G19 (green), which lie on either side of breakpoint B, showing hybridisation together on the normal chromosome
22 (arrowhead) and at opposite ends of the der22 (arrow). C. Single signal with W12-1570N6 on normal chromosome 22 (arrowhead), but split
signal on derived 22 (arrow) indicating position of breakpoint C. (D) Ideograms of wt and derived chromosome 22. The order of BAC and fosmid
clones employed in figure parts A–C is shown, together with the locations of breakpoints A–C. The 2 Mb region between breakpoints A and B is
shown in light red (orientation on the derived chromosome is uncertain). Breakpoint D on the satellite short arm was not further characterised.
Below left, map of the 65 kb region that includes breakpoint C, showing the positions and orientations of genes. The Southern blot analysis shows
an apparent breakpoint in the patient sample (P) compared with the control (C), localising the breakpoint to the indicated segment (double-ended
arrows) of ∼4 kb. Below right, the DNA sequence chromatogram spanning the breakpoints A and B is shown above an alignment of this sequence
with the normal sequences at the telomeric and centromeric ends of breakpoints. Arrows indicate positions and numbering of the last intact bases
on either side of the translocated region.
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autism, severe intellectual disability and early-onset epilepsy;
phenotyping with the family history interview revealed evidence
of the BAP in two other family members. Correct biological
relationships were confirmed by microsatellite analysis and by
haplotype analysis based on a 1M SNP chip (data not shown).
The variant was absent in 352 ECACC samples experimentally
tested, and not recorded in 6503 samples from the EVS. Amino
acid position 512 locates within the PEST1 sequence of TCF20
and is highly conserved in vertebrates (figure 3C); PEST
sequences provide targets for proteolytic protein degradation.35

In unrelated ASD probands from three families (singleton
families #3 and #4 and multiplex family #5), a c.4670C>T
transition encoding p.P1557L (PolyPhen-2 score 0.963) was
present (figure 3B). Proline 1557 locates within the PEST2
domain of TCF20 and is highly conserved in vertebrates
(figure 3C). The c.4670C>T variant was inherited from the

mother (about whom there are no phenotypic data) in family
#3 and from the father in families #4 and #5. In family #5,
both boys had ASD and average range IQ; the father had evi-
dence of the BAP. The frequency of this substitution in the ASD
cohort (3/342 individuals) is significantly higher (Fisher’s exact
test) than in control populations, based both on our own rese-
quencing data (0/793; p=0.027) and from EVS (3/4,300;
p=0.007). Observing that this C>T transition has arisen at a
hypermutable CpG site, we analysed the haplotype background
on which each variant T allele was present. Using microsatellites
and SNPs within a 0.54 Mb region around the substitution that
contains no recombination hotspots (defined as ≥10 cM/Mb)
according to the International HapMap Consortium (http://
hapmap.ncbi.nlm.nih.gov/), we found multiple differences
between each of the three haplotypes (table 4), including
different alleles in family #5 for SNPs (rs16986035 and

Figure 3 TCF20 gene structure, identification of variants in ASD cases and their location within conserved domains. (A) Schematic representation
of TCF20, exons are shown to scale with the coding sequence in white and untranslated regions filled in with black. There is an alternative stop
codon in the alternatively spliced exon 5. The position of the first coding nucleotide is shown in exon 2, numbers above boxes indicate cDNA
numbering at last nucleotides of exon boundaries or last nucleotide of stop codons; numbers in red below lines indicate intron sizes (not to scale).
The location of breakpoint A that interrupts TCF20 23350 bp 50 of exon 2 is also indicated. (B) Pedigrees of five families with variants of TCF20 that
are either novel or enriched compared with control samples. Below each pedigree is a chromatogram showing the sequence change together with
the amino acids encoded by the change and by adjacent codons. Black symbols indicate individuals with a clinical and research ASD diagnosis, the
white symbol indicates people without clinical ASD; where broader autism phenotype data are available this is described in the text; n/a indicates
that no DNA was available for analysis. Under each symbol, the status of that individual for the change found in the proband is shown. (C) Diagram
representing the TCF20 protein with previously annotated domains: P1-P3, PEST domains; N1-N3, nuclear localisation signals; MD, minimal DNA
binding domain; ZNF2, zinc finger domain. The three lines above the protein denote the following domains: TAD, transactivation domain; DBD, DNA
binding domain and the ePHD/ADD domain.37 The lower panel shows the positions and conservation of amino acid residues predicted to be
substituted in ASD pedigrees. The entire PEST1 and PEST2 sequences are shown with interspecies conservation in mammals, chicken and frog.
(D) Analysis of cDNA amplification product compared with genomic (gDNA) from region containing c.3518delA mutation in family #6. Restriction
digestion was performed with BslI, yielding product sizes (bp) of 215, 162, 145, 72, 1 in the absence of the mutation and 233, 215, 145, 1 in the
presence of the mutation. Lanes numbered as follows: 1, undigested gDNA from proband; 2, mother’s gDNA; 3, father’s gDNA; 4, proband’s gDNA;
5, proband’s cDNA and 6, −RT control for proband’s cDNA. Note similar relative intensities of mutant and non-mutant fragments in lanes 4 and 5,
indicating lack of significant nonsense-mediated decay associated with the frameshifting mutation.
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rs1548304) that flank the c.4670C>T variant. These data are
consistent with the mutation having arisen independently at
least twice.

In the case of TNRC6B, we identified 12 different rare non-
synonymous changes (encoding 1 frameshift, 1 single amino
acid deletion and 10 missense substitutions) each present in 1 or
2 of 335 IMGSAC samples sequenced (see online supplemen-
tary table S3). Of these, six were deemed unlikely to be causally
contributory because they were previously identified at signifi-
cant frequency in the EVS (n=4), the mutation was predicted as
being functionally benign (n=1) or an affected sibling did not
inherit the variant allele (n=1). In the remaining six cases
(which include the frameshift and the amino acid deletion), and
in contrast to TCF20, none was shown to have arisen de novo
or to show a significant frequency difference between cases and
controls (although lack of availability of DNA samples from
some family members prevented complete analysis). Hence,
these data are inconclusive regarding a contribution of TNRC6B
mutations to ASD in the IMGSAC cohort.

A de novo truncating mutation of TCF20 in an individual
with ASD and intellectual disability
While this work was being undertaken, we coincidentally dis-
covered a further TCF20 mutation during an unrelated project
aimed at identifying novel genetic causes of craniosynostosis.36

The exome sequence from a woman with unicoronal synostosis
segregating from her mother (family #6) was found to contain
a heterozygous one-nucleotide deletion of TCF20 (c.3518delA
encoding p.K1173Rfs*5). Analysis of parental samples showed
that it had arisen de novo, indicating that it was not causative of
the familial craniosynostosis (figure 3D). Clinical case note
review revealed that the proband had clinically diagnosed ASD
and moderate intellectual disability; she subsequently met
autism criteria during a research ADOS (table 2).

To determine whether this TCF20 mutation causes nonsense-
mediated mRNA decay, we analysed cDNA obtained from a
lymphoblastoid cell line from the proband. Unexpectedly, this
showed equal representation of the normal and mutant alleles in
the cDNA product (figure 3D), indicating that the mutant

mRNA is stable; hence, a truncated protein is expected to be
produced in significant quantities.

DISCUSSION
Starting with the clinical observation of the concurrence of a de
novo chromosome 22 inversion and ASD phenotype in two
male siblings, we have accumulated three lines of evidence sup-
porting a causative association between disruption of TCF20
and ASD, which was not identified by recent exome or genome
sequencing studies.14–19 First, the original inversion separates
the coding portion of TCF20 from a previously unannotated
upstream untranslated exon that is conserved in mice, and there-
fore likely to have an important function. Second, we identified
two de novo mutations of TCF20 (one encoding a missense
change in a predicted PEST domain, the other a one-nucleotide
deletional frameshift) in individuals with ASD. Third, we identi-
fied a significant association of ASD with a likely recurrent mis-
sense variant in a second predicted PEST domain of TCF20.
Although we do not exclude a contributory role for disruption
of TNRC6B to the ASD phenotype in family #1 (indeed, single
CNV-based deletion and duplication events in ASD cases that
include TNRC6B were previously catalogued),12 13 16 the evi-
dence from our own study is more compelling for the contribu-
tion of TCF20, which is the focus of this discussion.

TCF20 (also termed SPBP, SPRE-binding protein) encodes a
transcriptional coregulator,37 initially identified by its ability to
bind the stromelysin-1 PDGF-responsive element (SPRE)
element of the stromelysin-1 (matrix metalloproteinase-3/
MMP3) promoter.38 Although widely expressed, TCF20 shows
notably increased expression in premigratory neural crest cells39

and in the developing mouse brain at E13.5,40 with specific
enrichment in the hippocampus and cerebellum.41 This brain
expression pattern is consistent with a role in ASD.42

Significantly, TCF20 contains seven regions with 97% sequence
similarity to RAI1,27 mutations and deletions of which underlie
Smith–Magenis syndrome.32 The two proteins show an overall
45% similarity and share organisation of several domains such
as the three nuclear localisation signals, a C-terminal extended
PHD domain and an N-terminal transactivation domain.37 43

Table 3 Amino acid sequence altering variants of TCF20 found in 342 ASD samples, comparison with controls, and family follow-up

Nucleotide
change

Amino acid
change

Number of heterozygous
ASD samples/total
sequenced†

Number of heterozygous
control samples/total
sequenced†

Exome Variant Server
(EA) expressed as
rare/common alleles Family follow-up

PolyPhen-2
prediction

c.47G>C p.S16T 10/331 8/353 123/8477 – Benign (0.015)
c.162_167del p.

S55_G56del
2/331 3/353 35/8219 – n/a

c.del966_968 p.Q322del 1/336 2/354 11/8243 – n/a
c.1213A>G p.M405V 63/338 [4] 61/351 [3] 788/7812 – Benign (0)
c.1534A>G p.K512E 1/337 0/352 0 De novo Probably damaging

(0.970)
c.2164A>G p.S722G 102/338 [19] 119/354 [8] 1797/6803 – Benign (0)
c.3495G>A p.M1165I 1/335 0/356 11/8589 – Benign (0.01)
c.4670C>T p.P1557L 3/335 0/793 3/8597 See figure 3 Probably damaging

(0.963)
c.5810C>T p.P1937L 1/339 0/354 2/8598 Absent in affected sibling; present in

unaffected sibling
Probably damaging
(0.988)

c.5825C>A p.P1942H 1/339 0/354 1/8599 Absent in affected half-sibling;
transmitted by non-shared parent

Possibly damaging
(0.634)

†The number of samples from each panel found to harbour the variant is shown next to the number of samples successfully screened. Numbers in square brackets refer to
homozygous changes.
EA, European American.
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There is also striking similarity in the gene structure of RAI1
and TCF20, with over 90% of the coding region of each located
in one exon that also contains the start codon, suggesting that
TCF20 and RAI1 evolved from a common ancestor by genome
duplication.43 A yeast two-hybrid screen with the ZNF2 domain
of TCF20 as bait identified RAI-1 as a binding partner, showing
that these proteins are able to interact and therefore may also be
functionally related.27

To test whether mutations of TCF20 play a wider role in
ASDs, we screened the coding sequence in 342 IMGSAC
samples. We found two missense mutations of likely functional
significance (see figure 3). One of these, p.K512E, had arisen de
novo in the proband. Given that a total of 2 018 826 bp were
screened in the ASD samples (5903 bp TCF20 coding region in
342 samples) and assuming a germline mutation rate of
1.2×10−8,44 the chance of coincidentally identifying an unre-
lated de novo variant is ∼0.05. Hence, the de novo nature of the
p.K512E mutation favours a causal contribution to ASD, and
the high evolutionary conservation of the K512 residue is con-
sistent with this (figure 3C). Of note, a cousin of the proband
also had ASD but did not carry the variant (figure 3B), suggest-
ing that there is genetic heterogeneity for ASD causation within
this family.

The second TCF20 variant of note is the c.4670C>T (p.
P1557L) substitution identified in three ASD individuals from
335 successfully screened for this amplicon. In each case, the
variant was present in one of the parents without ASD; no BAP
data were available for two parents. In the multiplex family
(#5), it was inherited from a father with evidence of BAP and
also present in both an affected brother and a half-sister without
ASD but for whom no BAP data were available. Haplotype ana-
lysis of the individuals carrying the c.4670C>T transition in the
three families strongly supports an independent origin in family
5 compared with the other two families (table 4), compatible
with the notion that the p.P1557L substitution confers selective
disadvantage but is maintained at a low level in the population
by recurrent mutation at the CpG dinucleotide.

Of note, the two ASD-associated missense changes in TCF20
each locates within a different PEST domain. PEST sequences
are so-called because of enrichment in proline (P), glutamic acid
(E), serine (S) and threonine (T) and are common in proteins
that are rapidly degraded in eukaryotic cells35 and interact with
Cul3, a subunit of a Cullin-RING ubiquitin E3 ligase complex
that polyubiquitinates proteins.45 Loss of PEST motifs occurs,
for example, in NOTCH1 and NOTCH2 mutations that charac-
terise T-cell acute lymphoblastic leukaemia46 and Hajdu–
Cheney syndrome,47 respectively. Hence, these observations
suggest that the ASD-associated mutations might stabilise the
protein rather than causing a haploinsufficiency. Alternatively,
the p.P1557L substitution might affect the nucleosome-binding
activity associated with this region of the TCF20 protein.43

The final piece of evidence linking TCF20 with ASD came
serendipitously, while studying the genomic origins of craniosy-
nostosis in an unrelated study. Exome sequencing of family #6
revealed a heterozygous mononucleotide frameshifting mutation
of TCF20 in a woman with craniosynostosis, a phenotype that
was also present in her mother. Given that the mother was of at
least average range IQ, the ASD and moderate intellectual dis-
ability in her daughter were unexpected and were not thought
to be directly related to the coincident craniosynostosis. In the
context of our other findings, the de novo TCF20 mutation now
provides a plausible explanation for the proband’s phenotype.
Although it might be expected that this mutation would lead to
haploinsufficiency, cDNA analysis showed that the mutant
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message is stable (figure 3D). The more C-terminal PEST
domain would be absent in the translated product, which could,
as in the case of the missense mutations, stabilise the protein
against degradation.

In summary, we propose that TCF20 mutations constitute a
newly identified contributor to ASD that was not highlighted by
recent genome-wide screens.12–19 TCF20 mutations may also
contribute to intellectual disability, although not all individuals
with mutations had his phenotype (table 2). Interestingly none
of the mutations presented here predicts simple haploinsuffi-
ciency; this may explain why deletions of TCF20 have not been
observed in previous extensive CNV screens of ASD. Rather,
the pathophysiological mechanism may involve the persistence
or misexpression of TCF20 in critical tissues or timepoints: this
possibility should be addressed in future functional studies. Of
particular interest in this regard, both underdose and overdose
of the paralogous RAI1 protein cause overlapping neurological
symptoms, suggesting that RAI1 gene dosage is critical in spe-
cific neurodevelopmental pathways.48 Given the likely func-
tional overlap between TCF20 and RAI1, our observations
provide strong support for further investigation of the normal
functions of TCF20 in neurodevelopment and the role of muta-
tions in ASD.
A recent meta-analysis of genome-wide association studies in
schizophrenia49 identified a significant association with a SNP
(rs6002655) lying within an intron of TCF20. This raises the pos-
sibility that variation in TCF20/SPBP function may impact neuro-
psychiatric disorders additional to ASD.
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Table S1. Primers used to amplifya and sequence TCF20 and TNRC6B 
 
Amplicon Forward Primer 5'-3' Reverse Primer 5'-3' 
 
TCF20 
Exon 2.1 GGCAGAAGTTGCATTGAGCTGAGATCGTG ATCGCTGCCGCAGCAGCTGCTGCTC 
Exon 2.2 CCGGCTAGAAGAGTTCAGCCCTCGTCAG GAGGATGGCAGAGTTGAGGGCCGCTGCAT 
Exon 2.3 TTACCAGTCCCATCAGCCCCTGCCACAG ACCTCACAGGAACCTCAGGCTGGTTGTACTG 
Exon 2.4 GCAACAACAACACCCTTCTCAGCATGTGATGCAGT GAATTTGTGCAGCTATCTGCTTTCTTGGAAGATGAG 
Exon 2.5 GGCCAATCTTCCTAACACTGTCCAGCACATG TAGGTGGCCTTTGAGTGGCTGCAGGATCATC 
Exon 2.6 GGTGATTGTCTCCCGGGAAGCCATGACAG GCCATCCCCTGATGCTCTTGAGTACTCCTAG 
Exon 2.7 TTCCCAAGCCTCCTGCAGGAAGTGCTTCAG CATTCCTCCCAATTCTGGTGTCGGCACTCATG 
Exon 2.8 CTGTGATATTTCTCCACTAAGACAGATTGTCAG TGATAAGCAGAGGCCAGGGTTTCTGAGT 
Exon 2.9 GGAGACCCTCATCACATGAATCCACACATGAC CCTCAGCTAGTCCATGTCCATCAGTCTCATG 
Exon 2.10 GCAAACTTCTCCAGCCAAAAGCAGCGGTCCT GAGGGTAACAGCAGGGCAGTTTCTACTATCTG 
Exon 2.11 CAATTCCTATGCCCATCTTTCTCACAGTCAG AACTGTTTCTGCATGTGTCTCTGTCTTCACT 
Exon 2.12 CAGTCCAGCAAACCAGGAGTTGCACGTAG GTGGCTGGGTGGCATATTTTAGTTTGATCTCAG 
Exon 2.13 CCCCACAGATACCAGAAGGTTCTGCAGATG AGGTGGATTCTTCGGGAGAGTGGCTGCA 
Exon 2.14 GCCAGTTACCGGAACATGGGTGAC GGCACTTTAATTTGGAGGAATAATCATGTGACATG 
Exon 3 GAG ACA CGT GCT GAG GTC TAA CAG ATG CTGTATGTCCTAATCCTTTGGATGCTCTG 
Exon 4 CAA TCC CAG CCA GCA TGA CCA CAC CTA TGT C TTCAGGAGGAGCCACCCTCGATCCCATC 
Exon 5 CCT GAT TTC TGC ACT GTC CTC TCC CAC CTG AGGGCAGAGGCAACGACGCCTGCTG 
Exon 6 ACC TAT GTC CAG CTG TGA AGT CTC CAT CTG AC GGG ACT AAC AGC CGG AGG CAC AG 
 
TNRC6Bb 
Exon 1 CTGATTGACAAACCTACCCGAAGTCACATGATC CACGAAATGTCTGAAGCCAGTCTCCATGCTA 
Exon 2 GAAATGTCGTCTTGCCCACCACTTACAAGCAT CAGGAAAAAAAATAAAAGATATCGGATATTCAAGCCAAGACAGT 
Exon 3 TGGAAGGATGTCTGAACTGACTCCCAGCT GTGACTGCAAACAACCCACCTTAATTACTCTACG 
Exon 4 GATGTATTTCAAAGACTGTTTCCCAACCCCTCTCT CCCAGTGGTTTATATAATGAATGGCTTTCCTGGACT 
Exon 5.1 GCCCCTTTGAGGGATTAATGGGTAATGAATGC CCCTTTCCTAGAAGTTCCTTCTTGGACCAGT 
Exon 5.2 GGACTAGGAAATTGGAGGAATGTGAGTGGTCA GTCCCAAGAGTCATTTTTTGACCCAGTTGATTTCTGA 
Exon 5.3 GGAGTGTTGGATCTTGGGGTGCAGCTA GACAATCAGGATGTGTGGGCCTGTACG 
Exon 5.4 ACAGGAAGTGAAGTTGGAGGTCAAAGCACTG CAGAACTTTCCCAATTGCTGTTTTTTGTCTGATCGAC 
Exon 5.5 CCTCTTGGAATGAGAATCCCAGCAAGGATC CCCCATGCTGAAGTGCCATCATCAATGTC 
Exon 5.6 CTGCAACACCTAAGGATGAGGAACCCAGT CATTAAAATGTACTACCAGCATCTGCCATCACTAGCAT 
Exon 6.1 CCACCTTCACCCCACTGGATATTATGGCAT CCTCAAAAATGAAAAGCTTCACACTTACTAGGCTTCATG 
Exon 6.2 CTTGGGGTGAGCCAAATGAAAGCAGT GATCCCTCAAAAATGAAAAGCTTCACACTTAC 
Exon 7.1 GAGATGGAGTAGATAAAATTACAAAGACACGTAAATGCTGCA GAATGAGCAAGTGCGAACATTTCTAAGCAGGCTA 
Exon 7.2 GAGTCTGGAACACCACTGGCTCTCAG CCTTACTTAGGACCTTGAGGACCCCAGT 



Exon 8 CTCAAGTCTACATTTTCAGTCTGTATTAATAAAACTCAG CTATCCTCCTAAGGAAAAGGACAAAATGACTACACAT 
Exon 9 GTAGTAAGACGTGGCTCTCAGGTGAATAATGC CCTATCCCTAATCAAATTGGGCAGGAGATGC 
Exon 10 CCATGAGGATAGTGGGGCAGGTCAC CAAAAGACAAATGGGAACCAAAGCGGTTCTCATG 
Exon 11 GTTTATTGCTAGTGTTTCTCTCTTTTCCCTTCTTGCAT CAAATTTCCCAAGACAGACAAATGATGCAATAAACTGCA 
Exon 12 GAACACAGCCTGTGATTCTTCTGAGGGATC GATTTGAGATTTTGTTCTAAAAGTCTTCATCTTTGGCAGCTAG 
Exon 13 AGATTCCTTTTCTTTTCTTTCTTTTTTATTTTTTTGGCTAG GCAAATGACCTTTTTAGCCACAGGAAGA 
Exon 14 GCACAGACCCTTTAGGTGTCCTCAGT GCCCGGTTCTTTGCCATCAGAGGCTA 
Exon 15 CTGATGGCAAAGAACCGGGCACAGTC GTGCAACCCCTACCACAGGCCTAG 
Exon 16 GTCTTTGAATGACACTTGAAGGCATTCCTGGACT CCAAGTTCACTGCTACCACCCTCAATCATG 
Exon 17 CCATCAGCTTCAGAAGACTGTTTGCATTCCAG CTTAGTAACATGAATCACAAAAGCAATGTATTCTGAACCTGA 
Exon 18 TTCCTTGTCTCAGAATTCCAACCAGGAGTGC CTTTTAGGTACCAGCAAGTACAAATGAAGTCACAAACTGA 
Exon 19 CTCTCAAGGTTTCACTGGTTATACTGACATTTATCTTCAG GCTGTATCTGGCTCATCCTTCCTGAGACT 
Exon 20 GTAGTCACTGAAAATTTTATGTTCGTTATGCTCTAAGAACAGT CTTTTCCTCTACCAGAAGAAAAAGCAGACAACCATG 
Exon 21 GCATAAAAGTGCATAGGAGTCAGGGACCAGT CCCAACCTTTCCCTCTCTCTTAATACAATCAAGTC 
Exon 22 CAAAATGGGCACACTAGGTCTCAGCCAGT CAGCTGCCAGAATACTCACGGGTGCA 
Exon 23 TATGCTTTAGGATTTTCCTGAGATCCATAGCTC TTAGTGCTGCTGCTGTTCCAAAAAAGGTCA 
Iso3  Exon 3 CACAGTATCTGTGGCCTTATTGAGAGAATTTCAGTCT CTCTACTGTTCAATTTCTACCCAAACTGTACCTTTCAG 
Iso3  Exon 4 CAG TGA AAC GGC CCT GTG GTT CTG CA CCA ACG TAT ACA TCT CTG ACA AAC ACG CTT ATC AG 
 
 
aAmplification was carried out in 20 μl reactions containing 10-20 ng of DNA, 1×FastStart buffer (Roche), 1.5 mM MgCl2, primers at 0.5 μM, and dNTPs at 200 μM (final 
concentrations), with 0.75 U of FastStart Taq (Roche). PCR consisted of an initial incubation at 94/95°C for 6/8 min, followed by 35 cycles of denaturation at 94/95°C for 30 s, 
annealing for 30 s, and extension at 72°C for 30 s, with a final extension for 10 min. The annealing temperature used was 63°C, except for the following amplimers of TNRC6B: 6.2, 
59°C; 8, 60°C; 11, 62°C; 13, 58°C; 23, 60°C. 
bTNRC6B exon numbering is based on Uniprot Q9UPQ9 isoform 1 (1833 amino acids, 23 exons). The two additional coding exons that occur in isoform 3 are numbered according to 
their position in that isoform and shown at the bottom of the list.  
 
 
 



Table S2. Markers used to determine haplotypes surrounding the c.4670C>T variant present in three families 
 
Marker Name Marker type Genomic locationa Primer pair 5'-3' 
Tcfms1 Microsatellite 42544517 bp 

 
CTTGAACCCAGGAAGTCAAGGCTGCAGT 
6-FAM CAAGGAATGACTTCCCCACTTTTTACTACACAG 

Tcfms2 Microsatellite 42433855 bp GTCCTGAAACTACGGAATTCATTCATTAGTTCTAC 
6-FAM GGCAAGAAAAACAGAGGCTTCCAAGTCAGA 

Tcfms3 Microsatellite 42433133 bp TGTCAAGGTTTTCCCAATGTTTTCTTCGAGGA 
6-FAM CGGGAAAGGATAATCTGTTCAATAAACAGTACTG 

Tcfms4 Microsatellite 42390888 bp  TCAACTCTGTCCCACAGGCCTGTCTG 
6-FAM TCCAGGGAGGGCAGTGAAAATACCTCAC 

Tcfms5 Microsatellite 42775494 bp CTCACAGTGGGCGTGGGCTGCT 
6-FAM CTGGCAGCCTCACATTCCTCTTATCCA 

Tcfms6 Microsatellite 42782403 bp CACTGCACTCTGGCCTGGGTGATG 
6-FAM GGTTCTGTGATTGTCATGATAGGGCCTCAG 

Tcfms7 Microsatellite 42939056 bp ATGCCACTTGATCTAGATAGCAAGATGACTAG 
6-FAM AGACTTGCCAGACCCCACAATCTGTGA 

Tcfms8 Microsatellite 43053571 bp GGGGAGGCTAAGGGAGGTCTATAGATC 
6-FAM CTACAGGCCAGTAGGAAACCATTCATCTCTG 

rs5758652 SNP 42612408 bp TGTGGAACCCATATGGGCTGAGTGTC 
ATTTCTCTGCTTTCATGTATTAGGGTGATCACTG 

rs16986035 SNP 42602139 bp GATGTGCATATGTGTATGTGACCATCTGACAGTGT 
TTGAACTCCTGACCTCAGGCGATCTGC 

rs4453786 SNP 42563308 bp AAATGGGAGGACTTCTGTGTCGACCTCAG 
CCCCACTTTGCTCTGATCCCTTCACTG 

rs2899354 SNP 42554409 bp CAGGGATCCTCCGTGTCCCACTGT 
CACAAAAACCTGCAAAGGGATGTTTACAGCAGCT 

rs1548304 SNP 42691488 bp GGCAAGGGACCTGAAGACCCAGTGAT 
CAGCGGTGGGGAGTGTGGAGTGA 

rs6002674 
 

SNP 42694220 bp GCATCACCACTGTCTCCATTTCTCACATGTC 
CAACAGTCGGCCCTTTGGGTCAATCG 

rs11704558 
 

SNP 42695148 bp CCTTAGAAGCTGTGGACCAACTGAAACAGAG 
CCCCAGCCAGACATGGCCTCAC 

rs6002676 
 

SNP 42697216 bp GCAGAGCATGGCATCTGCACTTACCAG 
GCGTGGCACAGAGTAAGTGCTCAGCA 

aLocations for microsatellites refer to the first nucleotide of the repeat.  
 



 
Table S3. Amino acid sequence altering variants of TNRC6B found in 341 ASD samples, comparison with controls, and family follow-up  
 
Nucleotide changea Amino acid change Number of 

heterozygous 
ASD 
samples/total 
sequencedb 

Number of 
heterozygous 
control 
samples/total 
sequencedb 

Exome Variant 
Server (EA) 
expressed as 
rare/common alleles 
(selected AA 
frequencies in 
brackets) 

Family follow up PolyPhen 2 prediction 

c.46G>A 3 p.V16M 64/293 [5] 75/379 [6] 875/7515 - Benign (0.000) 

c.108A>C  p.K36N 1/334 1/383 0/7620 

Absent in affected 
sibling; transmitted by 
parent.  Probably damaging (0.981) 

c.622A>G 1&2  p.T208A 1/335  n/a 0/8350 (25/3947) - Benign (0.000) 

c.871G>A 1&2 p.D291N 1/332 1/381 7/8251 

Present in one affected 
sibling (PDD), absent 
in another; present in 
two unaffected 
siblings; transmitted 
by parent.  Possibly damaging (0.682) 

c.875G>A 1&2 p.R292K 2/332 0/381 2/8250 

Absent in affected 
sibling; transmitted by 
parent; other case 
(singleton) transmitted 
by parent Benign (0.435) 

c.962G>A 1&2 p.R321K 1/332 0/384 0 

Present in affected 
sibling; transmitted by 
parent Possibly damaging (0.932) 

c.1511C>T 1&2 p.S504F 1/330 0/384 0 Transmitted by parent Probably damaging (0.996) 
c.2750G>C 1&2 p.G917A 1/335 n/a 22/8222 - Probably damaging (0.997) 
c.2911T>C 1&3 p.S971P 1/335 n/a 1/8247 (55/3887) - Benign (0.005) 

c.3043G>A p.E1015K 1/335 0/384 0 

Present in one affected 
and one unaffected 
sibling; transmitted by 
parent Possibly damaging (0.878) 

c.3359C>A p.P1120Q 1/334 0/382 2/8196 
Not present in the one 
parent tested  Probably damaging (0.999) 

c.4098delG; 
4101A>C p.I1368fs 1/333 0/383 0 

Not present in the one 
parent tested n/a 



c.4318_4320del  p.I1440del 1/332 0/383 0 
Transmitted by parent, 
affected sib untested n/a 

a1&3 = isoform 1 and 3 only; 1&2 = isoform 1 and 2 only; 3 = isoform 3 only. Where no superscript indicated, exon is represented in all 3 isoforms and numbering is given for 
isoform 1. 
bThe number of samples from each panel found to harbour the variant is shown next to the number of samples successfully screened. Numbers in square brackets refer to 
homozygous changes. n/a, not available. 
 
 



 
 
Figure S1. The TCF20 transcript contains a previously unannotated first exon that 
encodes an alternative untranslated region. The upper panel shows alignment of 
sequence obtained via Sanger sequencing of a PCR product amplified from cDNA (1) 
with sequence from a genomic location ~68,400 bp 5� of the previously annotated 
first exon of TCF20 (2) and the region of the first exon which shows contiguity with 
this sequence (3). The chromatogram from sequence 1 is denoted 1* while the 
genomic location of the novel first exon is labelled 2* and the 5� region of the 
previously annotated first exon is denoted 3*. The location of the identified exons 
within the genomic sequence are shown in 2* and 3* denoted by uppercase blue 
lettering. Note that there is a canonical GT splice donor immediately 3� of the novel 
exon 1 sequence (lower case underline in 2*) and an AG splice acceptor 5� of the 
exon 2 sequence (lower case underline in 3*). The ATG encoding the initiating 
methionine is also underlined (upper case lettering) in the upper and lower-right 
panels. 
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