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ABSTRACT
Approximately 10% of melanoma cases report a relative
affected with melanoma, and a positive family history is
associated with an increased risk of developing
melanoma. Although the majority of genetic alterations
associated with melanoma development are somatic, the
underlying presence of heritable melanoma risk genes is
an important component of disease occurrence.
Susceptibility for some families is due to mutation in one
of the known high penetrance melanoma predisposition
genes: CDKN2A, CDK4, BAP1, POT1, ACD, TERF2IP and
TERT. However, despite such mutations being implicated
in a combined total of approximately 50% of familial
melanoma cases, the underlying genetic basis is
unexplained for the remainder of high-density melanoma
families. Aside from the possibility of extremely rare
mutations in a few additional high penetrance genes yet
to be discovered, this suggests a likely polygenic
component to susceptibility, and a unique level of
personal melanoma risk influenced by multiple low-risk
alleles and genetic modifiers. In addition to conferring
a risk of cutaneous melanoma, some ‘melanoma’
predisposition genes have been linked to other cancers,
with cancer clustering observed in melanoma families at
rates greater than expected by chance. The most
extensively documented association is between CDKN2A
germ line mutations and pancreatic cancer, and a cancer
syndrome including cutaneous melanoma, uveal
melanoma and mesothelioma has been proposed for
BAP1 germ line mutations. Other medium to high
penetrance melanoma predisposition genes have been
associated with renal cell carcinoma (MITF, BAP1) and
glioma (POT1). These associations between melanoma
and other cancers hint at the possibility of common
pathways for oncogenesis, and better knowledge of
these pathways may improve understanding of the
genetic basis underpinning familial melanoma. It is likely
that ‘melanoma’ risk genes will impact on mutation
screening and genetic counselling not only for
melanoma but also a range of other cancers.

INTRODUCTION
The concept of melanoma risk is dynamic and
multifaceted, owing to the diverse aetiology and
heterogeneous nature of the disease. Genetic,
phenotypic and environmental risk factors all con-
tribute to melanoma predisposition. The majority
of alterations underlying the genetic basis of this
disease occur as random acquired mutations within
melanocytes, and an accumulation of genomic
changes contribute to melanoma development, pro-
gression and evolution. However, the presence of
heritable germ line variants is an important compo-
nent of melanoma susceptibility.1 Genes that pre-
dispose to melanoma are typically grouped into
low, medium and high penetrance genes.2

Penetrance relates to the likelihood of a mutation

carrier developing the disease over time, and
reflects the overall contribution of a specific gene
polymorphism, or mutation, to melanoma risk.
Although no single presently known germ line
alteration guarantees melanoma development, the
main impact of predisposition genes is the elevation
of baseline melanoma risk. For an individual with
moderate to high genetic susceptibility, it is likely
that fewer somatic mutations are required to accu-
mulate before a critical level for oncogenesis is
reached. Additionally, melanoma risk genes may
interact directly with other genes or environmental
risk factors to influence and activate melanoma
growth pathways.1 3

A positive family history is associated with an
increased risk of developing melanoma, and is par-
ticularly significant when there is a first-degree rela-
tive with multiple primary melanomas, or single
primary melanomas in two or more first-degree
relatives.1 The most common gene implicated in
familial melanoma is cyclin-dependent kinase
inhibitor 2A (CDKN2A), accounting for predispos-
ition in approximately 20–40% of melanoma fam-
ilies.1 Despite a handful of other known high
penetrance genes, many cases of familial melanoma
are not accounted for molecularly, and the genetic
basis for susceptibility remains unexplained for a
large percentage of families. This suggests a likely
polygenic mechanism of inheritance, including
multiple low-risk alleles and genetic modifiers, as
well as the possibility of rare mutations in other
high-penetrance genes yet to be discovered. The
risk genes that underpin familial melanoma may
also be relevant to other cancers. Familial clustering
of additional cancers has been observed in melan-
oma families, particularly pancreatic cancer linked
to CDKN2A mutations, and the evidence for mel-
anoma being part of broader cancer syndromes is
mounting.1 4

HIGH PENETRANCE GENES
Cyclin-dependent kinase inhibitor 2A
The CDKN2A gene on chromosome 9p21 consists
of four exons that encode two unrelated proteins in
different reading frames arising from alternatively
spliced transcripts. p16 inhibitor of cyclin-
dependent kinase 4 (p16INK4A) is produced from
the α transcript of exons 1α, 2 and 3, whereas p14
alternate reading frame (p14ARF) is produced
from the β transcript of exons 1β, 2 and 3. The
main tumour suppressor activity of p16INK4A is
through inhibition of cyclin-dependent kinases 4
and 6 (CDK4 and CDK6), thus maintaining retino-
blastoma protein (RB) in a hypophosphorylated
state to prevent cell cycle S-phase entry.5 p14ARF
is a positive regulator of p53, and therefore a loss
of p14ARF allows for accumulation of DNA
damage as cells escape the senescence barrier.5 The
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structure of CDKN2A into two reading frames means that muta-
tions can affect either p16INK4A, p14ARF or both, depending
on which exon is affected. Autosomal dominant inheritance of
germ line CDKN2A mutations has been implicated in approxi-
mately 20–40% of familial melanoma, although the mutation
frequency varies between different geographical regions.5

Geographically linked founder mutations have been docu-
mented, with some occurring as a single predominant mutation
based on common ancestry. CDKN2A founder mutations have
been found in Sweden and the Netherlands, namely p.
Arg112dup and p16-Leiden, respectively, both located in exon 2
and originating in northern Europe approximately 2000 years
ago.6 Another dominant variant has been identified in Iceland,
with G89D mutation contributing to the genesis of approxi-
mately 2% of all invasive cutaneous melanoma in that country.7

In Europe, G101W occurs as a founder mutation in France,
Italy and Spain.5 A number of common mutations are shared
between Australia and the UK, including M53I, IVS2-105A/G,
R24P and L32P, reflecting a shared ancestry from British colon-
isation of Australia in the late 18th century.5 Differences in
mutation penetrance between regions likely reflect a combin-
ation of genetics and environment associated factors, where
family members are predicted to share the same ultraviolet radi-
ation (UVR) exposures as well as a number of other heritable
genetic modifiers.1 Several independent features have been asso-
ciated with positive CDKN2A mutation status, including mul-
tiple primary melanomas, high number of family members with
melanoma, Breslow thickness >0.4 mm and early age of melan-
oma onset.8 9 Compared with the relatively high penetrance in
cohorts of familial melanoma, a much lower lifetime risk has
been identified for individuals with CDKN2A mutation in
population-based analysis.10

Among the high penetrance familial melanoma genes,
CDKN2A is unique in that it has also been identified as a low
penetrance gene conferring increased risk of melanoma in the
general population. Genome-wide association studies (GWAS)

have shown that variants located around the CDKN2A locus are
associated with cutaneous melanoma, naevus count and tanning
ability.2 11–13 Several independent variants are proposed to con-
tribute to complex association signals in the CDKN2A region,
and the association with melanoma risk is likely to involve mul-
tiple single nucleotide polymorphisms (SNPs).2 These SNPs
include rs869330 and rs7023329 within the MTAP gene, and
rs1101970 in CDKN2B-AS1 (figure 1).2 14

The above locus is a naevus associated region, with CDKN2A
mutation carriers displaying a higher total naevi number and
total naevi density compared with non-carriers.15 Phenotypic
naevus differences have also been observed, with mutation car-
riers demonstrating significantly more clinically atypical naevi
(figure 2).15 An atypical naevus has been defined as having one
or more of the following clinically observed features: size
>5 mm in diameter, border or contour irregularity, colour
asymmetry or multiple colours, and diffusion of pigment. Some
CDKN2A coding region mutation carriers have a clinical pheno-
type consistent with atypical naevus syndrome, historically also
sometimes referred to as dysplastic naevus syndrome, however
the variability of phenotypic expression means that not all car-
riers have atypical naevi.15

Cyclin-dependent kinase 4
Germ line mutations in CDK4 on chromosome 12q14 impact
the same pathway as CDKN2A mutations, and the oncogenic
effects of CDK4 mutations are primarily via the control of cell
cycling in the G1 phase.16 Two different mutations have been
identified, in codon 24 of exon 2, leading to substitution of
arginine with either histidine or cystine. These R24C and R24H
mutations lead to CDK4 behaving as a dominant oncoprotein
through loss of binding to p16, its negative regulator.16 Thus
far, a total of 18 families with CDK4 mutations have been iden-
tified worldwide. The R24C variant has been found in six fam-
ilies, from France, Italy, the UK and the USA.16 The R24H
variant has been found in the other 11 families, comprising

Figure 1 Key melanoma-associated single nucleotide polymorphisms on chromosome 9p21 and 9p22 in MTAP (rs869330 at position 21804617,
and rs7023329 at position 21816528), CDKN2A (rs3088440 at position 21968159, and rs3731204 at position 21984661) and CDKN2B-AS1
(rs1011970 at position 22062134).2 14 Arrows indicate the direction in which genes are transcribed. Units next to the chromosome ideogram
indicate megabase position of each gene from the terminus of the short arm of chromosome 9. Exons (open boxes) of CDKN2A are numbered, and
dotted lines show how alternative splicing generates the alternate reading frame (ARF) and INK4A gene products.

2 Read J, et al. J Med Genet 2016;53:1–14. doi:10.1136/jmedgenet-2015-103150

Cancer genetics
 on A

pril 19, 2024 by guest. P
rotected by copyright.

http://jm
g.bm

j.com
/

J M
ed G

enet: first published as 10.1136/jm
edgenet-2015-103150 on 3 S

eptem
ber 2015. D

ow
nloaded from

 

http://jmg.bmj.com/


three Latvian families, two French families, and one family
each from Australia, Denmark, Greece, Italy, Norway and the
UK.16–19 In an analysis of 17 families, median age at first melan-
oma diagnosis was 39 years, and the lifetime mutation pene-
trance based on the available data was estimated at 74%.16 The
low frequency of CDK4 mutations means that very large popu-
lation studies are required to accurately assess the contribution
of CDK4 mutations to the overall burden of familial melanoma
and the penetrance of cutaneous melanoma in the context of
these mutations.

BRCA1-associated protein-1
Germ line inactivating mutations in BRCA1-associated protein-1
(BAP1), a tumour suppressor gene on chromosome 3p21, were
initially identified in two distinct syndromes. Testa et al20 identi-
fied one as characterised by familial aggregation of mesotheli-
oma and uveal melanoma, and Wiesner et al21 concurrently
described the other as characterised by multiple morphologically
distinct cutaneous melanocytic neoplasms and uveal melanoma.
The familial aggregation of cancers associated with a proposed
BAP1 syndrome has subsequently been expanded to include

cutaneous melanoma, and additional neoplasms are increasingly
being linked to BAP1 germ line mutations, including meningi-
oma, cholangiocarcinoma, renal cell carcinoma (RCC) and basal
cell carcinoma.22–28 The diversity of cancers suggests that the
inactivating mutation is variably penetrant for different tumour
types, and possibly that mutations in BAP1 depend on other
unidentified genetic modifiers for a cancer phenotype to be
expressed. The first recurrent BAP1 mutation has recently been
reported in three families from two continents, with one family
carrying a likely independent mutation based on founder haplo-
type analysis.28 A clustering of uveal and cutaneous melanoma
in these families, and the presence of only one mesothelioma
case, supports the hypothesis that specific BAP1 variants predis-
pose to certain subsets of cancers.28

A cutaneous phenotypic feature for BAP1 germ line mutations
has been proposed by the presence of multiple 0.2–1.0 cm pink
to tan papules and nodules, termed ‘melanocytic BAP1-mutated
atypical intradermal tumours’ (MBAITs), or alternatively,
‘BAPomas’.21 29–31 These lesions are similar but histopathologic-
ally distinct from atypical Spitz tumours, lacking characteristic
Spitz naevi features, and are also phenotypically distinct from

Figure 2 Atypical naevi showing the hallmarks of large size, border or contour irregularity, colour asymmetry or multiple colours, and diffusion of
pigment. (A) many atypical naevi on the back; (B) close-up view of centre back naevi seen in A, showing highly irregular contour and colour
variation; (C) dermoscopy of left naevus marked ‘2’ in (A and B), demonstrating peripheral reticular distribution of pigment relatively homogeneously
associated with some centrally distributed globules and pigment reinforcement. Overall the lesion is relatively symmetrical; (D) dermoscopy of right
naevus marked ‘1’ in (A and B) showing atypical reticular distribution of pigment with asymmetry in the vertical axis. Relative enlargement of
pigment network in focal areas is more central with some radial streaming. Overall the lesion is relatively homogeneous in colour and does not have
any blue/white veiling, regression or other hallmarks of melanoma; (E) an atypical naevus of large size, asymmetry, irregular pigmentation and
contour; (F) close-up view of naevus seen in (E and G) dermoscopy of naevus seen in (E and F), showing predominantly reticular distribution of
pigment with some areas of amorphous pigment. Asymmetry in the vertical axis, heterogeneous distribution of pigment and irregular borders.
Multiple brown/grey dots centrally and symmetrically distributed. No blue/white veil, no regression or other hallmark of melanoma (diagnosis to be
interpreted in the context of other lesions on the same patient).

Figure 3 Examples of melanocytic BAP1-mutated atypical intradermal tumours (MBAITs)/BAPomas, demonstrating pink to tan papules and
nodules, usually symmetrical in shape and of fairly uniform colour, which contrasts with the phenotype of atypical naevi (figure 2), often seen in
CDKN2A mutation carriers.
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naevi seen in carriers of mutations in other melanoma predis-
position genes such as CDKN2A (figures 2 and 3).31 As these
lesions typically occur at a younger age than other cancers,
accurate identification could alert to the possibility of BAP1
mutation and prompt amplified cancer surveillance. Although
the MBAITs associated with BAP1 mutations were initially
reported not to progress to cutaneous melanoma, atypical fea-
tures of faint orange-red pigment, red papule morphology and
halo formation have been described in cutaneous melanomas of
individuals in BAP1 mutation positive families.23 24 32 The fea-
tures may represent an overlap between the phenotype and cuta-
neous melanoma, either through transformation of an existing
MBAIT, or de novo melanoma development with a phenotype
influenced by the specific BAP1 cancer pathway. Of 21 presently
reported families affected by BAP1 mutations, 16 families had at
least one individual affected by cutaneous melanoma, confirm-
ing the place of melanoma in the BAP1 syndrome.20 22–25 27–

29 31–35 BAP1 functional inactivation is also proposed to con-
tribute to a small proportion of sporadic cutaneous melanoma,
with an absence of BAP1 expression on immunohistochemistry
staining described in approximately 5% of tumours.36

Therefore, in the context of familial aggregation of cutaneous
melanoma, a tumour with somatic loss of 3p and/or the loss of
BAP1 protein expression may suggest screening for a BAP1
germ line mutation is warranted.

Protection of telomeres 1
Protection of telomeres 1 (POT1) contributes to the six-
component protein complex of shelterin, which protects
telomeres by preventing them from being mistakenly recognised
as deleterious DNA breaks, regulating telomere region DNA
replication, as well as telomerase recruitment and activity.37

Two recent studies have identified nine highly penetrant germ
line mutations in the POT1 gene, the majority of which affect
oligonucleotide/oligosaccharide-binding (OB) fold domains,
which are essential for the binding of POT1 to telomeric single
stranded DNA.37–39

POT1 variants appear to be highly penetrant, with one study
of melanoma families from the UK, the Netherlands and
Australia observing that all nine carriers developed melanoma,
in addition to some individuals developing breast and small cell
lung cancer.38 Melanoma associated POT1 mutations include a
p.Tyr89Cys variant of the N-terminal OB domain in a five-case
family, and a splice-acceptor variant between exons 17 and 18
in a six-case family.38 Two further OB fold domain mutations,
p.Gln94Glu and p.Arg273Leu, were each found in a case from
different families.38

A rare novel missense variant in the OB2 domain, p.
Ser270Asn, was detected in all 11 cases and obligate carriers
from four Italian families, with the same variant also identified
in one of two affected individuals in a bilineal Italian family.39

Although all five families were apparently unrelated, the haplo-
type of the POT1 region was shared by all carriers, suggesting a
common ancestor approximately 10 generations ago as the
source of the founder mutation.39 Two further POT1 variants,
p.Gln623His and p.Arg137His, were identified in another two
Italian families.39 In both studies, telomeres of POT1 mutation
carriers were relatively long, which has previously been identi-
fied as a risk factor for melanoma.40

Adrenocortical dysplasia protein homolog/telomeric repeat
binding factor 2 interacting protein
Recently, mutations in other shelterin complex genes have been
found to predispose to melanoma (figure 4). Mutations in the

Figure 4 High, medium and low
penetrance genes and their
chromosome band locations. Black text
denotes high penetrance genes; blue
text denotes medium penetrance
genes; red text denotes low
penetrance genes.
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adrenocortical dysplasia protein homolog (ACD) and telomeric
repeat binding factor 2 interacting protein (TERF2IP) genes
were identified in a study of melanoma families without known
genetic aetiology.38 39 41 In a cohort of melanoma families that
were wild type for known predisposition genes, segregating
mutations in ACD were found in four families, and another two
mutations were identified that did not segregate with all melan-
oma cases in the families.41 A nonsense mutation in one
Australian family, p.Q320X, segregated in all four cases available
for genotyping, and was associated with early age at diagnosis.
Another mutation, p.N249S, was identified in an Australian
family and a Danish family, with a shared founder haplotype
across the ACD locus. In the Australian family, with eight con-
firmed and four unconfirmed cases of cutaneous melanoma, the
mutation segregated in all seven cases available for testing. Of
five confirmed and one unconfirmed case in the Danish family,
three affected family members were found to be carriers. p.
Q320X and p.N249S are within the POT1 binding domain of
ACD, reflecting the key role of the ACD/POT1 subunit in medi-
ating the elongation of telomeres.41

TERF2IP is important in the negative regulation of telomere
length, by repressing homology-directed repair. A nonsense
mutation and three novel missense variants have been identified.
The p.Q191R was associated with onset of melanoma at 15
years and 24 years, and is predicted to disrupt the binding site
for TERF2.41 This loss is proposed to prevent TERF2IP con-
tributing to the shelterin complex. A case-control analysis of the
ACD and TERF2IP mutations in sporadic melanoma cases did
not identify any carriers, indicating that rare mutations are
likely to be significant only in a familial context.41

Telomerase RT
Progressive shortening of telomeres with each cell division is a
characteristic of normal aging, and may be hastened by exposure
to harmful environmental risks such as UVR. Maintenance of
telomere length is a function of telomerase, and altered telomer-
ase regulation contributes to the limitless replicative potential of
cancer cells. Telomerase RT (TERT) encodes a catalytic subunit
of telomerase, and somatic TERT promoter mutations have been
identified in a variety of cancers, including melanoma.42 TERT
has also recently been implicated in familial melanoma follow-
ing high-throughput sequencing of four affected and four non-
affected individuals in a 14-case German family.43 After the
region was first identified by multipoint linkage analysis, sequen-
cing of all genes in the region revealed several novel variants,
including a T>G variant in the TERT promoter.43 This germ
line mutation was found in all four affected individuals, as well
as one unaffected member who was only 36 years old and had
multiple naevi.43 Two affected individuals developed melanoma
at age 20 years and age 30 years, in addition to other cancers,
suggesting that this mutation is a rare but highly penetrant mel-
anoma risk mutation. Screening of 168 cell lines from sporadic
metastatic melanoma did not find other occurrences of this
novel germ line variant, although somatic recurrent
UVR-signature mutations elsewhere in the TERT promoter were
present in 125 of the cell lines.43

MEDIUM PENETRANCE GENES
The relatively low frequency of high penetrance mutations sug-
gests that a multitude of alternative germ line mutations could
help explain melanoma predisposition. Medium and low pene-
trance alleles are more prevalent in the general population, but
singularly, they are unlikely to be enough to drive oncogenesis.44

However, the complex interplay of several of these alleles may

combine to raise the level of personal melanoma risk above a
critical threshold. In this regard, a component of polygenic her-
itability has been demonstrated to underlie all sporadic
cancers.44 To date, three medium penetrance genes (ie, those
with variants that have ORs of disease association of between 2
and 5) predisposing to melanoma have been identified.
Interestingly, all three are involved in natural variation in pig-
mentation (summarised below).

Melanocortin 1 receptor gene
The melanocortin 1 receptor gene (MC1R) encodes the
G-protein coupled receptor MC1R, which binds α-melanocyte
stimulating hormone (α-MSH).45 Binding of the ligand normally
activates adenylate cyclase, which then increases intracellular
levels of cyclic AMP (cAMP). Raised cAMP triggers a subse-
quent cascade via downstream microphthalmia-associated tran-
scription factor (MITF) and tyrosinase to stimulate melanocyte
proliferation, dendricity, and eumelanin pigment synthesis
(figure 5).45 The increase of photoprotective black/brown eume-
lanin pigments decreases the relative amount of red/yellow
pheomelanins, which are poorly protective against UVR. The
type and quantity of pigment determines phenotypic expression
of skin and hair colour, as well as skin sensitivity to UVR and
tanning response. A number of variant MC1R alleles associated
with reduced cell surface receptor expression have been identi-
fied. This situation reduces binding of α-MSH, and subsequently
lower cAMP levels result in less eumelanin and a greater propor-
tion of pheomelanins.45–47

MC1R is highly polymorphic and a link has been established
between particular alleles and a red hair colour (RHC) pheno-
type. Variants most strongly associated with the RHC phenotype
are termed R alleles, and the consequently reduced or non-
functional cell surface receptors and increased pheomelanin
causes the phenotypic traits of RHC, fair skin, freckling and
inability to tan.45 Other MC1R variants that are more weakly
associated with RHC and have less penetrant impact on the cell
receptors are designated r alleles. RHC associated MC1R var-
iants are typically inherited in an autosomal recessive pattern.45

Variants may be inherited in a heterozygous +/R or +/r pattern,
or a homozygous R/R or r/r state. Although RHC is generally a
recessive trait, increases in the percentage of individuals with
fair skin, blonde hair and red hair reflect in vitro studies of a
dominant negative effect of MC1R variant receptors on
co-inherited wild type alleles.45 Variants associated with melan-
oma include the R alleles D84E, R142H, R151C, R160W and
D294H, (with ORs of 1.85–2.90) and the r alleles V60L,
V92M, I155T, R163Q and T314T (with ORs of 1.37–
2.61).48 49 A French case-control study recently identified 69
rare MC1R polymorphisms, including 25 novel melanoma pre-
disposition variants.48 Just over half of the identified alleles
were predicted to have a functional impact (D variants).48 Of
the novel alleles, 14 D variants were exceedingly rare, each asso-
ciated with only a single case in the melanoma cohort. Several
others were identified in the control group.48

A pooled analysis with a large sample size from 17 case-
control studies found that individuals carrying a single MC1R
variant had an almost 40% increased risk of melanoma com-
pared with homozygous wild type controls, and that the risk
attributable to any MC1R variant was 28%.49 For carriers of
two or more MC1R variant alleles, the risk of cutaneous melan-
oma was more than double the risk found for wild type con-
trols.49 Interestingly, for individuals with the RHC phenotype,
presence of MC1R variants alone was insufficient to independ-
ently predict melanoma risk.49 This could possibly reflect the
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significant role of environment and UVR in modulating risk for
RHC variant carriers.

The analysis also revealed an association between MC1R var-
iants and melanoma for Caucasian patients with darkly pigmen-
ted skin.49 Notably, the MC1R variant/melanoma association has
been reported as stronger for photoprotective phenotypes.49 50

This may reflect the putative role of MC1R in non-pigment
pathways, including activation of nucleotide excision repair
and other DNA repair mechanisms in response to UVR
damage.51–53 For variant alleles, a compromised UVR response
has been attributed to a diminished α-MSH mediated oxidative
stress response and reduced effects on target DNA damage
response genes.53 This link to DNA repair helps explain the role
of MC1R in melanoma susceptibility, suggesting that variant
alleles may use either pigment or non-pigment pathways to
cause melanoma. The non-pigment pathways are particularly
relevant for variants that are associated with melanoma but not
with the RHC phenotype.49

Microphthalmia-associated transcription factor
The MITF gene encodes the transcription factor MITF, and is a
key regulator of pigment cells, including the development and
differentiation of melanocytes. A recently identified recurrent
germ line mutation, MITF p.E318K, is responsible for the substi-
tution of glutamic acid at position 318 with lysine.54 55 The
lysine residue at the site changes the binding affinity for a
small-ubiquitin-like modifier (SUMO) protein, and subsequently
decreases SUMOylation.54 55 SUMO directed post-translational
modification typically impacts transcriptional regulators to

inhibit transcription, and thus reduced SUMOylation effectively
removes the brakes from MITF action on downstream targets.56

Comparison of expression profiles for MITF regulated targets
identified 37 genes, with 17 showing modest differences in
expression between wild type and p.E318K isoforms.55 This dif-
ference may indicate that variant MITF mutations have particular
transcriptional affinity for specific sets of target genes. Although
the precise molecular mechanisms have yet to be fully elucidated,
it is apparent that MITF p.E318K acts as a gain of function muta-
tion predisposing to familial melanoma. Carriers of the p.E318K
variant have been identified as having a significantly higher risk
of developing melanoma (ORs of 2.09–2.19), and the p.E318K
mutation has been shown to cosegregate with melanoma in mul-
tiple families.54 55 Cosegregation was observed in some but not
all family members, implying that it is a medium-penetrance mel-
anoma variant, similar to MC1R.55 From population analysis of
controls, few mutations were detected, therefore denoting MITF
p.E318K as a rare population variant.55 57 58 The p.E318K muta-
tion has also been linked with a particular phenotype, comprising
non-blue eye colour, increased number of naevi and multiple
primary melanomas.54 55 57 58

Solute carrier family 45, member 2
In contrast to MC1R and MITF, solute carrier family 45,
member 2 (SLC45A2) variants are associated with darker skin
colour, and appear strongly protective against melanoma. The
gene product functions as a membrane-associated transporter
protein, and is thought to influence pigmentation via the pro-
cessing and trafficking of melanosomal proteins such as

Figure 5 MC1R and the pigment synthesis pathway. Binding of α-melanocyte stimulating hormone (α-MSH) to its cognate receptor MC1R on the
surface of a melanocyte triggers cyclic AMP (cAMP) production via adenylate cyclase (AC). This activates the CREB and MITF transcription factors,
causing an increase in expression of several components of the melanin synthesis pathway, and leads to a switch in pigment production from
pheomelanin to eumelanin in melanosomes.

6 Read J, et al. J Med Genet 2016;53:1–14. doi:10.1136/jmedgenet-2015-103150
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tyrosinase.59 60 The ancestral variant 374 L of rs16891982 has
been associated with olive and dark skin, and confers a protect-
ive effect against melanoma, even for individuals with a fair
phenotype (ORs of 2.37–5.50).59 61 62 This variant is more
common in individuals from southern Europe and the
Mediterranean region, and there is a decreasing gradient of
allele frequency from the south to the north of Europe.60 63

LOW PENETRANCE GENES
In addition to two of the known medium penetrance genes
MC1R and SLC45A2, 18 other low penetrance risk loci have
been associated with melanoma through GWAS (table 1).64

Agouti signalling protein (ASIP), tyrosinase (TYR),
tyrosinase-related protein 1 (TYRP1) and oculocutaneous albin-
ism type II (OCA2) are involved in pigmentation.2 60 61 65 ASIP
encodes for an antagonist of α-MSH, which competitively binds
to MC1R, thereby preventing MC1R-mediated stimulation of
eumelanin synthesis (figure 5). ASIP has been variably associated
with melanoma.2 Similar to MC1R RHC variants,
melanoma-associated ASIP SNPs have been linked to red hair
and skin freckling.66 TYR impacts eye colour and tanning
response, where activity of the enzyme tyrosinase influences the
ratio of eumelanin to pheomelanin, and thus TYR alterations
can contribute to a fair skin phenotype (figure 5).66 TYR SNPs
associated with blue eye colour and skin sun sensitivity have
been significantly associated with melanoma, as have SNPs in
TYRP1.2 66 TYRP1 stabilises the protein encoded by TYR, and
therefore mutations in this gene can also affect tanning
response.66 Further to known phenotypic associations with mel-
anoma, increased risk has been reported for pigment related
SNPs in the HERC2/OCA2 region on chromosome 15q13.1.67

The two SNPs most significantly associated with melanoma risk
are rs1129038 and rs12913832, the latter being a key determin-
ant of human blue-brown eye colour.67 68 PLA2G6 is associated
with pigmentation and naevi, while CASP8, TERT, AGR3,
MTAP/CDKN2A and FTO are associated with variation in

naevus density.14 61 63 65–67 69–78 In addition to its role in
naevus count, TERT is also associated with telomere length, as
is OBFC1.73 Two loci (PARP1, ATM) are associated with DNA
repair, and two others are linked to methylthiolation of tRNA
and regulation of cell cycle progression (CDKAL1 and CCND1,
respectively).65 73 79 80 Four other loci: ARNT/SETDB1,
CYP1B1, MX2 and TMEM38B/RAD23B, are associated with
melanoma but via uncertain mechanisms.65 73 79

GENETIC MODIFIERS AND INTERACTIONS
Overall risk in familial melanoma is modified by the pooled
contribution of many factors, including other genes, phenotyp-
ical characteristics and the environment. The addition of modi-
fiers or interactions can influence the penetrance of a certain
allele, and contribute to increased, or decreased, melanoma
susceptibility.

Gene-gene
Epistasis is a gene-gene interaction, where the effect of a par-
ticular gene depends on the presence of another modifier gene.
Epistasis can also be linked to multiple genes, where a certain
genetic background may be essential for subsequent gene
expression.81 A number of epistatic mutations likely contribute
to the polygenic inheritance of melanoma.

Further to its contribution as an independent risk gene for
melanoma, MC1R variants act as genetic modifiers by increasing
the penetrance of CDKN2A mutations. A recent meta-analysis
showed that melanoma risk doubled for patients with mutations
in CDKN2A and MC1R compared with mutated CDKN2A
alone, and that carriers of multiple MC1R variants were even
more likely to develop melanoma.3 For potential interactions of
MC1R with other genes located near CDKN2A, all 10 recently
identified candidate polymorphisms on chromosome 9p21 did
not show any significant association on interaction analysis.11

Telomere length has been also investigated in relation to
CDKN2A status, following previous associations between

Table 1 Melanoma loci identified through GWAS

Gene Chromosome band Regional peak OR Pigmentation Naevi References

ARNT, SETDB1 1q21 rs12410869 0.88 No No 79

PARP1 1q42.12 rs1858550 0.87 No No 79, 80

CYP1B1 2p22.2 rs6750047 0.92 No No 73

CASP8 2q33.1 rs7582362 0.89 No Weak/trend 65

TERT 5p15.33 rs380286 1.16 No Yes 65, 70, 77

SLC45A2 5p13.3–13.2 rs250417 2.44 Yes, strong No 61, 63, 65, 70, 72

CDKAL1 6p22.3 rs6914598 1.11 No No 73

AGR3 7p21.1 rs1636744 1.11 No Weak/trend 73

MTAP/CDKN2A 9p21.3 rs7852450 0.81 No Weak/trend 14, 65, 70, 76

intergenic (TMEM38B) 9q31.2 rs10739221 0.89 No No 73

OBFC1 10q24.33 rs2995264 0.87 No No 73

CCND1 11q13.3 rs498136 0.89 No No 65

TYR 11q14.3 rs1393350 1.22 Yes, strong No 14, 66, 69, 70

ATM 11q22.3 rs73008229 0.83 No No 65

OCA2/HERC2 15q12–13.1 rs4778138 0.84 Yes, strong No 63, 67, 71–73

FTO 16q12.2 rs12596638 1.15 No Yes 78

MC1R 16q24.3 rs75570604 1.82 Yes, strong No 14, 68, 70

ASIP 20q11.22 rs6059655 1.42 Yes, strong No 14, 66, 69, 70, 74, 75

MX2 21q22.3 rs408825 1.15 No No 65

PLA2G6 22q13.1 rs2092180 0.89 Yes Yes 14, 61, 65, 76

GWAS, genome-wide association studies.
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cutaneous melanoma and longer telomeres. In contrast to non-
carriers, the study failed to show a link between telomere length
and melanoma for carriers of CDKN2A mutations, either sug-
gesting a divergent melanoma pathway in these individuals, or
more likely, insufficient power to detect an association.40

Interaction between the MITF p.E318K allele and MC1R
RHC variants has been variably reported, and there does not
appear to be an interaction in the majority of patients.58 82

However, one patient in an Australian cohort with a p.E318K
allele and MC1R homozygous R/R genotype developed three
amelanotic melanomas, suggesting a genetic interaction as the
source of this phenotype.58 An analysis of 33 candidate poly-
morphisms in several pigmentation genes and the vitamin D
receptor (VDR) gene identified significant epistatic effects
between MC1R and TYR, and SLC45A2 and VDR, among
others.12

MC1R has been proposed to also interact with somatic BRAF
p.V600E mutations to drive melanomagenesis, likely by allow-
ing cells to bypass senescence.83 In vivo studies have demon-
strated that the simultaneous expression of BRAF p.V600E and
MC1R depletion results in greater melanocyte growth and
tumour formation compared with either factor alone.83

Gene-phenotype
Pigmentation traits with less melanin are linked to melanoma
via reduced protection against UVR. Phenotypic risk factors for
melanoma in the general population include blue or green eyes,
fair or red hair, fair skin with increased sun sensitivity and an
inability to tan, high numbers of naevi, and atypical naevi.
Several genetic variants predisposing to pigment and naevus
phenotypes have been identified in the general population,
which in turn have been implicated in predisposition to
melanoma.45

In addition to the effect on DNA repair, the variant
MC1R-mediated RHC phenotype of red hair, pale skin, and an
inability to tan confers melanoma susceptibility by increased
potential for sunburn and UVR damage.45 The medium pene-
trance risk gene MITF has been associated with the phenotypic
characteristic of high naevus count.55 58 In an Australian study,
carriers displayed significantly higher counts of naevi greater
than 5 mm, but without distinct dermoscopic naevus signature
patterns.58 For carriers of the p.E318K mutation, there was an

association with non-blue eye colour but no association with
other known phenotypic characteristics, including skin colour,
hair colour and freckling.55

Gene-environment
The most significant independent environmental risk factor for
melanoma is UVR exposure, and a potential interaction between
geographical location and CDKN2A penetrance has been
observed. A large international study of families from three con-
tinents found significant variation in mutation penetrance
depending on geographical location, likely correlating with asso-
ciated UVR exposure.1 By age 50 years, mutation penetrance
reached 0.13, 0.50 and 0.32 in Europe, the USA and Australia,
respectively. By age 80 years, it was 0.58 in Europe, 0.76 in the
USA and a staggering 0.91 in Australia.1 Although these pene-
trance rates appear to correspond with latitude and hence UVR
exposure, it is possible that varying penetrance of different
region specific CDKN2A variants or co-inheritance of other
genetic modifiers could contribute to the differences.

Tobacco smoke has been linked to increased penetrance of
CDKN2A for pancreatic, upper gastrointestinal and respiratory
cancers, and it is hypothesised that it may also affect CDKN2A
penetrance for melanoma.4

FAMILIAL MELANOMA MUTATIONS AND RISK OF OTHER
CANCERS
Some familial cutaneous melanoma predisposition genes have
also been linked to risk of other tumour types, where the inci-
dence of specific cancers occurs within melanoma families at
rates greater than expected by chance (table 2).

The most extensively documented association is between
CDKN2A and pancreatic cancer, although associations have
been noted for a range of other cancers.4 5 84 85 A study of car-
riers of the Swedish p.Arg112dup CDKN2A founder mutation
found significantly increased risk of pancreatic cancer, upper
digestive (oral cavity, tongue, pharynx, larynx, oesophagus,
stomach, liver, gall bladder) cancers and respiratory (bronchi
and lung) cancers.4 At age 80 years, 53% of carriers were
reported to have at least one of these specific cancers.4

Interestingly, the risk of cancer was significantly higher in indivi-
duals who had ever smoked, compared with carriers who had
never smoked.4 Upper gastrointestinal and respiratory tissues

Table 2 Melanoma predisposition genes and associations with other cancers

Gene
Chromosome
band Modifiers

Associated non-cutaneous
melanoma cancers Possibly associated cancers* References

CDKN2A 9p21 MC1R, UVR,
possibly tobacco
smoke

Pancreas ENT (tongue, oral cavity, pharynx, larynx), upper digestive
(oesophagus, stomach), brain, breast, cervix, gall bladder, thyroid,
leukaemia, liver, lung, lymphoma, renal

5, 6, 85, 86

CDK4 12q14 – – Breast, cervix, colorectal, lung, lymphoma, pancreas, stomach,
uterine

17–20

BAP1 3p21.1 – RCC, uveal melanoma,
mesothelioma, BCC,
cholangiocarcinoma

Bone, bladder, breast, colorectal, lung adenocarcinoma,
meningioma, neuroendocrine, ovarian, paraganglioma, stomach,
thyroid

21–36

MITF 3p14.2 Possibly MC1R RCC, pancreas Bladder, brain (glioblastoma), breast, colorectal, endometrial,
leukaemia, lung, lymphoma, myeloma, prostate, stomach

55, 56, 58

TERT 5p15.33 – – Bladder, breast, endometrial, lung, ovarian, renal 43, 44

POT1 7q31.33 – Glioma Brain, breast, CLL, endometrial, leukaemia, thyroid, SCLC 39, 40, 90, 91

ACD 16q22.1 – – Breast, colorectal, leukaemia, lung, lymphoma 42

TERF2IP 16q23.1 – – Breast, cervix, meningioma, ovarian 42

*Possibly associated cancers include those documented in pedigrees of affected individuals and their non-wild type untested family members.
BCC, basal cell carcinoma; CLL, chronic lymphocytic leukaemia; ENT, ear, nose, and throat; RCC, renal cell carcinoma; SCLC, small cell lung cancer; UVR, ultraviolet radiation.
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are particularly sensitive to carcinogens, and exposure to
tobacco smoke and other environmental carcinogens may
increase the penetrance of CDKN2A in these cancers in a
similar manner to UVR and melanoma. An international study
reported an increased risk of all non-melanoma cancers in first
degree relatives of CDKN2A mutation carriers.84 For mutation
carriers, the lifetime risk of any cancer other than melanoma
was estimated at 59% by age 85 years.84

Further to CDKN2A variants and melanoma risk, the 9p21
locus has been linked to a variety of other cancers. An analysis
of eight different GWAS identified several significant SNPs in
this region, including some variants associated with multiple
cancers.86 Of particular note may be the CDKN2A intronic
rs3731239 SNP, which was associated with oesophageal squa-
mous cell cancer, gastric cancer and breast cancer.86 Although
these results to do not directly relate to specific melanoma risk
SNPs, it is interesting to consider the potential impact of this
region to cancer susceptibility more generally, and as a potential
site for other novel cancer predisposition variants.

An association with multiple cancers has also been indicated
for POT1.38 39 Other cancer types include breast cancer, small
cell lung cancer, endometrial cancer and brain tumours, which
have been observed in POT1 mutation carriers and their
untested family members. There may also be a link with chronic
lymphocytic leukaemia (CLL), which has somatic mutations in
POT1 at relatively high frequency, the majority of which affect
the OB folds, a finding that is in keeping with alterations
detected in the recent melanoma studies.38 39 87 88 One POT1
mutation carrier had a history of melanoma and CLL, and it is
possible that a variant exists that could affect a portion of the
OB fold domain that is relevant to the development of melan-
oma and CLL.38

Additionally, POT1 has recently been implicated in the devel-
opment of glioma.89 Three novel protein-changing variants have
been described, each found in one family with a high case
density of glioma. In one family with six carriers and one obli-
gate carrier of p.G95C, three individuals developed glioma at
young ages.89 Of six carriers in a family with a p.E450X muta-
tion, two were affected by glioma.89

Glioma has previously been tentatively associated with melan-
oma following the observation of more melanoma cases than
expected in glioma families.90 Although the underlying basis for
susceptibility is uncertain, analysis of potential glioma suscepti-
bility loci by GWAS has identified variants in chromosome 9p21
near CDKN2A and CDKN2B.91 92 The glioma candidates are
not in the same linkage disequilibrium block as the CDKN2A
melanoma gene, but it suggests the possibility that this region
may account for shared predisposition to both cancers.

More cancers than expected have also been found in families
carrying ACD and TERF2IP mutations, which like POT1, affect
the shelterin complex. Although the numbers are too few to be
statistically significant, additional cancers in carriers with melan-
oma include lung, breast, bowel and haematological malignan-
cies, suggesting a possible ACD/TERF2IP associated spectrum of
cancers.41

Somatic TERT promoter mutations have been found in a wide
range of different cancer types, and the occurrence of multiple
additional cancers in individuals affected by a novel germ line
promoter mutation suggests that these other cancers could be
due to dysregulation of TERT.42 43 One individual was diag-
nosed with endometrial cancer at age 27 years and melanoma at
age 30 years. A second affected family member developed mel-
anoma at age 20 years, then subsequently had ovarian cancer,
RCC, bladder cancer, mammary carcinoma and bronchial

carcinoma before her death at age 50 years.43 It has been sug-
gested that the nucleotide sequence change in the germ line
variant creates a binding motif similar to the one already used
by the ternary complex factor Elk1, which has been demon-
strated as a transcriptional regulator in breast, cervical and endo-
metrial cancers.43 93–95 Although a tenuous link, this could help
explain gender related differences as well as the presence of
endometrial, ovarian and breast cancers.

A bidirectional association has been established between mel-
anoma and RCC for sporadic cases, and a number of familial
melanoma studies have also noted an over-representation of this
cancer.96 RCC and pancreatic cancer have been linked to the p.
E318K mutation in MITF, and a potential connection between
melanoma and lymphoma has been noted.54 55 57 Mutation p.
E318K upregulates hypoxia inducible factor, which has been
identified as the downstream target of other known RCC predis-
position genes.54 BAP1 has also recently been associated with
the development of RCC. In an analysis of 60 French families
with BAP1-reminiscent cancer clustering, RCC-affected indivi-
duals were identified in 6 out of 11 families with germ line
BAP1 mutations.26 A novel variant has been detected in one
American family with multiple cases of RCC but no other
cancers, suggesting that germ line BAP1 mutations may rarely
predispose solely to RCC.97

The high density of cancer in families affected by germ line
BAP1 mutations suggests that this gene is a critical regulator of
oncogenesis for the tumours identified.30 The numerous func-
tional domains of the BAP1 protein present a range of potential
sites for mutation. Therefore a number of germ line variants
may exist, each possibly contributing to a different collection of
cancers. Further to the heterogeneity of BAP1 mutations, it is
likely that modifier genes and environmental factors also impact
the cancer phenotype in BAP1 families. A BAP1 cancer cluster
comprised of cutaneous/ocular melanoma, atypical melanocytic
proliferations, and other internal neoplasms such as mesotheli-
oma has been proposed as a particular syndrome.23 However,
further studies have implicated a range of other cancers as part
of a possible BAP1 spectrum. In addition to RCC, possibly asso-
ciated neoplasms include lung adenocarcinoma, meningioma,
paraganglioma, breast cancer, neuroendocrine tumours, gastric
cancer and basal cell carcinoma.22 24 25 27 28 These findings hint
at the prospect of many other BAP1 associated cancers as more
families are identified.

FAMILIAL CANCER SYNDROMES AND MELANOMA RISK
A number of other rare autosomal familial cancer syndromes
have been described, characterised by the occurrence of multiple
cancers including melanoma. These include Li-Fraumeni syn-
drome, xeroderma pigmentosum, Werner syndrome and familial
breast cancer. Li-Fraumeni syndrome is linked to TP53, and
germ line mutations are associated with breast cancer, bone and
soft tissue sarcomas, brain tumours and adrenocortical carcin-
omas.98 99 The inclusion of melanoma in the syndrome has
been controversial, however a handful of melanoma cases have
been reported, including one patient with a germ line TP53
mutation who presented with multiple primary cutaneous mela-
nomas.100 In contrast, xeroderma pigmentosum is an autosomal
recessive condition caused by mutations in one of eight nucleo-
tide excision repair genes, and the DNA repair function they
encode is crucial to the cellular response to UVR-induced DNA
damage.101 Coupled with UVR damage, this failure in DNA
repair predisposes to increased sun sensitivity and skin cancers.
A 2000-fold and 10 000-fold increase in melanoma and non-
melanoma skin cancers, respectively, has been reported, as well
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as an increase in neural system cancers.101 Werner syndrome is
also autosomal recessive, and loss of function mutations in the
WRN gene lead to premature aging and multiple cancer suscep-
tibilities, with the spectrum comprising thyroid cancer, melan-
oma, meningioma, sarcomas and leukaemia.102 Analysis of
tumours other than breast cancer in carriers of BRCA1 or
BRCA2 mutations has shown that BRCA2 defects are associated
with 2.6-fold and 99.4-fold increased risks of cutaneous and
uveal melanoma, respectively, but there is no increase in melan-
oma risk associated with BRCA1 mutation.103 104

CLINICAL IMPLICATIONS AND FUTURE PRACTICE
The identification of cancer predisposition genes by genetic
testing is typically only recommended when the results influence
clinical decisions and treatment can be implemented to prevent
or improve clinical outcomes.105 Genetic testing in melanoma is
therefore controversial, due to the relatively low frequency of
high penetrance mutations and the contribution of multiple
additional factors that modulate melanoma risk. Despite this,
heightened surveillance and more regular skin checks could be a
useful outcome for a patient with a known susceptibility.

One of the main benefits encountered from genetic testing is
that it may prompt useful discussions about melanoma risk,
early detection and prevention with multiple family members.
The impact of melanoma risk discussion on the effect on future
sun safety behaviours has been demonstrated in a group of
family members identified for CDKN2A testing.106 Two years
following genetic testing, individuals sustained improvements in
daily sun protection and fewer sunburns, with no diminution
after a negative test result.106 Although this study is subjective, it
highlights the potential positive impact of increasing awareness
and education. Counselling may therefore form an opportunistic
intervention to motivate preventative behaviours and minimise
UVR exposure risk.

With time, it is anticipated that the data pool of presently
known variants will expand, which will be particularly import-
ant for analysis of rare variants in a wider population. For fam-
ilies with a high cancer burden but no carriers of previously
identified predisposition genes, next-generation sequencing will
be key to identifying potential novel high penetrance variants
and narrow the present knowledge gap. If future studies indicate
clinical utility for genetic testing, it is likely that only high pene-
trance predisposition genes would be prioritised for gene panels
dedicated to melanoma risk evaluation. Although the epistatic
effect of MC1R variants on CDKN2A penetration has been
noted, it is less likely that low penetrance risk or medium pene-
trance risk genes would be used as routine screening tests due to
the uncertainty of predicting the clinical outcome of disease
development.3

Progressing from attribution of melanoma risk, future practice
in familial melanoma may involve novel susceptibility genes as a
basis for development of early detection strategies. The possibil-
ity of combining clinical and genetic information for prognostic
estimates has been proposed, where a novel logistic regression
model of two significant SNPs, histological tumour type and
stage at diagnosis had an improved discrimination of 3-year mel-
anoma recurrence compared with histology and stage alone.107

A recently published study analysed 2339 SNPs in 14 autosomal
genes of the Fanconi anaemia pathway, which is involved in the
cross-link repair of DNA. Four SNPs were significantly asso-
ciated with reduced overall survival and melanoma-specific sur-
vival, and combination of these factors with tumour stage and
Breslow thickness further refined 5-year predictive ability.108

Although the potential for targeted treatments directed at
germ line mutations seems unlikely, it may be plausible in the
future, particularly for high penetrance genetic variants with
germ line and sporadic manifestations.

CONCLUSION
Overall, the landscape of melanoma risk genes is becoming
gradually less mysterious, with the addition of BAP1, POT1,
ACD, TERF2IP and TERT to the known high penetrance melan-
oma risk genes CDKN2A and CDK4. Ongoing studies of
recently identified pigmentation genes in a wider population
will be highly significant in their independent risk and the add-
itional risk conferred by gene-gene and gene-phenotype interac-
tions. Novel candidate genes are promising, however there
likely still remains a great many to be elucidated. The contribu-
tion of melanoma risk genes to other cancers is particularly
important for families with observed cancer clustering, where
novel genes may also predispose to other cancers. In the future,
it is plausible that melanoma risk genes could be used for
genetic counselling of melanoma as well as the other cancers
they influence. The most important outcome of familial melan-
oma research will be in clinical application, and even without
genetic testing, awareness of the hereditary component of mel-
anoma is likely to improve health promotion and advocacy as
part of holistic patient care. Future research will continue to val-
idate known risk genes in wider populations, and will also aim
to discover novel predisposition genes for the large percentage
of families with a high case density but no identified presently
known genes. Although routine genetic testing is currently not
recommended due to the complex polygenic interplay that influ-
ences the clinical picture of melanoma, the potential for predis-
position genes to be utilised as screening tools, for prognostic
information, and as targets for treatment may be important in
future practice.
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